hinge loss的一种实现方法

hinge loss的一种实现方法
FesianXu 20220820 at Baidu Search Team

hinge loss是一种常用损失[1],常用于度量学习和表征学习。对于一个模型 y ^ = f ( x ) , y ^ ∈ [ 0 , 1 ] \hat{y}=f(x), \hat{y} \in [0,1] y^=f(x),y^[0,1],如果给定了样本 x x x的标签 y y y (假设标签是0/1标签,分别表示负样本和正样本),那么可以有两种选择进行模型的表征学习。第一是pointwise形式的监督学习,通过交叉熵损失进行模型训练,也即是如式子(1-1)所示。
L c e = − ∑ i = 1 C y i log ⁡ ( s ( y ^ i ) ) s ( y ^ ) = exp ⁡ ( y ^ i ) ∑ j = 1 C exp ⁡ ( y ^ j ) (1-1) \begin{aligned} \mathcal{L}_{ce} &= -\sum_{i=1}^{C} y_i \log(s(\hat{y}_i)) \\ s(\hat{y}) &= \dfrac{\exp(\hat{y}_i)}{\sum_{j=1}^{C} \exp(\hat{y}_j)} \end{aligned} \tag{1-1} Lces(y^)=i=1Cyilog(s(y^i))=j=1Cexp(y^j)exp(y^i)(1-1)
其中的 s ( ⋅ ) s(\cdot) s()是softmax函数。第二种方式是将样本之间组成如 < s + , s − > <s^{+}, s^{-}> <s+,s>的pair,通过hinge loss进行pair的偏序关系学习,其hinge loss可以描述为式子(1-2):
L h i n g e = max ⁡ ( 0 , s − − s + + m ) (1-2) \mathcal{L}_{hinge} = \max(0, s^{-} - s^{+} + m) \tag{1-2} Lhinge=max(0,ss++m)(1-2)
其中的 s − s^{-} s s + s^{+} s+分别表示负样本和正样本的打分,而 m m m这是正样本与负样本之间打分的最小间隔。如Fig 1.所示,我们发现 s + − s 1 − < m s^{+}-s^{-}_{1} < m s+s1<m,而 s + − s 2 − > m s^{+}-s^{-}_{2} > m s+s2>m,从式子(1-2)中可以发现,只有 s 1 − s_{1}^{-} s1会产生loss,而 s 2 − s^{-}_{2} s2则不会产生loss,这一点能防止模型过拟合一些简单的负样本,而尽量去学习难负例。

hinge_loss

Fig 1. hinge loss的图示。

从实现的角度出发,我们通常可以采用下面的方式实现,我们简单介绍下其实现逻辑。

import torch 
import torch.nn.functional as F

margin = 0.3
for data in dataloader():
    inputs, labels = data
    score_orig = model(inputs) # score_orig shape (N, 1)
    N = score_orig.shape[0]
    score_1 = score_orig.expand(1, N) # score_1 shape (N, N)
    score_2 = torch.transpose(score_1, 1, 0) 

    label_1 = label.expand(1, N) # label_1 shape (N, N)
    label_2 = label_1.transpose(label_1, 1, 0)
	label_diff = F.relu(label_1 - label_2)
    score_diff = F.relu(score_2 - score_1 + margin)
    hinge_loss = score_diff * label_diff
    ...

为了实现充分利用一个batch内的样本,我们希望对batch内的所有样本都进行组pair,也就是说当batch size为 N N N的时候,将会产出 N 2 − N N^2-N N2N个pair(样本自身不产生pair),为了实现这个目的,就需要代码中expandtranspose这两个操作,如Fig 2.所示,通过这两个操作产出的score_1score_2之差就是batch内所有样本之间的打分差,也就可以认为是batch内两两均组了pair。

score_diff

Fig 2. 对score的处理流程图

与此相似的,如Fig 3.所示,我们也对label进行类似的处理,但是考虑到偏序已经预测对了的pair不需要产生loss,而只有偏序错误的pair需要产出loss,因此是label_1-label_2产出label_diff。通过F.relu()我们替代max()的操作,将不产出loss的pair进行屏蔽,将score_difflabel_diff相乘就产出了hinge loss。

label_diff

Fig 3. 对label处理的流程图。

即便我们的label不是0/1标签,而是分档标签,比如相关性中的0/1/2/3四个分档,只要具有高档位大于低档位的这种物理含义(而不是分类标签),同样也可以采用相同的方法进行组pair,不过此时label_1-label_2产出的label_diff中会出现大于1的item,可视为是对某组pair的loss加权,此时需要进行标准化,代码将会改成如下:

import torch 
import torch.nn.functional as F

margin = 0.3
epsilon = 1e-6
for data in dataloader():
    inputs, labels = data
    score_orig = model(inputs) # score_orig shape (N, 1)
    N = score_orig.shape[0]
    score_1 = score_orig.expand(1, N) # score_1 shape (N, N)
    score_2 = torch.transpose(score_1, 1, 0) 

    label_1 = label.expand(1, N) # label_1 shape (N, N)
    label_2 = label_1.transpose(label_1, 1, 0)
	label_diff = F.relu(label_1 - label_2)
    score_diff = F.relu(score_2 - score_1 + margin)
    hinge_loss = torch.sum(score_diff * label_diff) / (torch.sum(label_diff) + epsilon) # 标准化处理,加上epsilon防止溢出
    ...

Reference

[1]. https://blog.csdn.net/LoseInVain/article/details/103995962, 《一文理解Ranking Loss/Contrastive Loss/Margin Loss/Triplet Loss/Hinge Loss》

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FesianXu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值