来源:数学建模清风 学习内容所整理
文章目录
数据资料搜索网站 虫部落-快搜 https://www.chongbuluo.com/
搜索优先级:
1.谷歌搜索
2.微信搜索
3.知乎搜索
评价类模型
评价类问题中主要分为确定评价指标,形成评价体系,就是对目标打分排序选最优解。
(例如:选择哪种方案最好、哪位运 动员或者员工表现的更优秀)。
解决评价类问题先从三个问题入手:
①评价的目标是什么?
从题目要求中获取
②为了达到目标有哪些可选方案?
题目中所给可执行方案
③评价的指标是什么?
从背景材料、常识、及网上搜集的参考资料(文献)筛选合适指标
模糊综合评价
1.概念
- 模糊数学介绍:模糊数学又称Fuzzy数学,是研究和处理模糊性现象的一种数学理论和方法。
- 模糊综合评价: 用隶属度来划分进对应指标评语类别。
2.经典集合和模糊集合的基本概念
(1)经典集合(classical set)和特征函数
不重要,只是概念引入,非模糊数学内容
(a)集合:具有相同属性的事物的集体,例如:性别、颜色、自然数集…
(b)集合的基本属性:①若a
∈
\in
∈A,b
∈
\in
∈A,则 a
≠
\neq
=b,互斥性
② a
∈
\in
∈A 和 a
∉
\notin
∈/A 有且仅有之一发生(非此即彼),确定性
(c)数学中对于经典集合的刻画:特征函数(characteristic function)
(2)模糊集合(fuzzy set)和 隶属函数
(a)模糊集合: 用来描述模糊性概念的集合(帅、高、白、年轻)
(b)与经典集合相比,模糊集合承认亦此亦比
(c)数学中对于模糊集合的刻画:隶属函数(membership function)
(d)模糊集合的三种表示方法
(e)模糊集合的分类
3.隶属函数的三种确定方法
(1)模糊统计法:找多个人对同一个模糊概念进行描述,用隶属频率去定义隶属度。(数模比赛中很少用,因为要设计问卷发放,时间成本高);
(2)借助已有的客观尺度(需要合适指标,并能收集到数据)
注:找的指标必须为0到1之间
(3)指派法(根据问题的性质直接套用些分布作为隶属函数,主观性较强)–>最常用
- 直接从下表选取套用作为隶属函数即可计算
4.应用:模糊综合评价(评判)
(1)评价问题概述
- 模糊评价问题是要把论域中的对象对应评语集中一个指定的评语或者将方案作为评语集并选择一个最优的方案。(两个角度)
- 当因素集内指标数量少于5时一般用一级模糊评价模型(如果略大于5,但是每个元素独立不相近,也可用)
- 当因素集内指标数量多于5时,可把相似的小类划分为一大类,就用多级模糊评价模型
(2)一级模糊综合评价模型
- 确定三种集合(因素集、评语集、权重集)
- 计算模糊综合判断矩阵(R矩阵)—>隶属函数可套用分布,也可自行定义
- 权重集合乘以判断矩阵得对各类的综合隶属度
例一:
例二:
例三:根据已有指标,自定义隶属函数
(3)多级模糊综合判断模型
- 为什么要用多级?
—>因素集中元素较多(指标较多)时,对其归类,把形似的小类分为一大类可以简化计算。
(例如:确定权重时,指标越少越容易) - 多级和一级的区别?
—>先对最低级的分类做模糊综合评价得出隶属度,再做中级的,最后汇总做最高级的模糊综合评价。
三级模糊评价模型