今天,我的博客生涯终于开始了。博客对我来说真是个新奇的东西,看到身边的同学在使用博客时总感觉遥不可及,但万事开头难,我坚信自己最终也会养成用博客记录自己的点滴进步的习惯,让我们一起期待吧!
我从今天开始了《Python数据分析与机器学习实战》的学习,记录下第一部分——机器学习入门中的收获。
机器学习
基本内容
1、机器学习(ML)主要包含算法、数据、程序、评估、应用等几部分内容。
2、应用:数据挖掘、统计学习、计算机视觉(CV)、自然语言处理(NLP)、语音识别等。
3、流程:
(1)数据收集及预处理——训练数据
(2)特征选择与模型构建——特征抽取、学习函数
(3)评估与预测——预测
学习方法
1、数学原理推导——“怎么来”
2、实际应用技巧——“怎么用”
算数推导
1、大学数学基础
2、多与身边的大牛交流圈、博客中的大神探讨
3、亲自动手、勤做总结
实际应用
1、有用的资源网站:Github、Kaggle数据挖掘比赛
2、案例积累
3、先模仿优秀案例,再创作自己的解决方法
深度学习
我曾经一直很困惑现在热门的机器学习(ML)、深度学习(DL)、计算机视觉(CV)之间的关系,今天终于得到了解答!
1、关系:DL是ML中神经网络这种算法的延伸,而且现在应用范围更广,尤其在CV和NLP领域。
2、ML仍是DL的基础,需要认真学习。
好了,今天的博客就到此结束了。虽然,都是一些浅显易懂的知识,但还是能给正为ML入门而感到迷茫的同学们一些启发和思路,大家一起加油鸦!