最近做时间序列分析的时候需要用到奇异谱分析,发现网上可以查到的资料很有限,看paper的时候发现大部分也说得有些简略,所以这里看完之后总结一下。
奇异谱分析(Singular Spectrum Analysis, SSA)是一种处理非线性时间序列数据的方法,通过对所要研究的时间序列的轨迹矩阵进行分解、重构等操作,提取出时间序列中的不同成分序列(长期趋势,季节趋势,噪声等),从而进行对时间序列进行分析或去噪并用于其他一些任务。
奇异谱分析主要包括四个步骤:嵌入——分解——分组——重构。
1. 嵌入
SSA的分析对象是有限长一维时间序列
[
x
1
,
x
2
,
.
.
.
,
x
N
]
[x_1, x_2,...,x_N]
[x1,x2,...,xN],
N
N
N 为序列长度。首先需要选择合适的窗口长度
L
L
L 将原始时间序列进行滞后排列得到轨迹矩阵:
X
=
[
x
1
x
2
⋯
x
N
−
L
+
1
x
2
x
3
⋯
x
N
−
L
+
2
⋮
⋮
⋮
x
L
x
L
+
1
⋯
x
N
]
\boldsymbol{X}=\left[\begin{array}{cccc}{x_{1}} & {x_{2}} & {\cdots}& {x_{N- L+1}} \\ {x_{2}} & {x_{3}} & {\cdots} & {x_{N-L+2}} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {x_{L}} & {x_{L+1}} & {\cdots} & {x_{N}}\end{array}\right]
X=
x1x2⋮xLx2x3⋮xL+1⋯⋯⋯xN−L+1xN−L+2⋮xN
通常情况下取
L
<
N
/
2
L<N/2
L<N/2。令
K
=
N
−
L
+
1
K =N-L+1
K=N−L+1,则轨迹矩阵
X
\boldsymbol{X}
X 为
L
×
K
L\times{K}
L×K的矩阵
X
=
[
x
1
x
2
⋯
x
K
x
2
x
3
⋯
x
K
+
1
⋮
⋮
⋮
x
L
x
L
+
1
⋯
x
N
]
\boldsymbol{X}=\left[\begin{array}{cccc}{x_{1}} & {x_{2}} & {\cdots}& {x_{K}} \\ {x_{2}} & {x_{3}} & {\cdots} & {x_{K+1}} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {x_{L}} & {x_{L+1}} & {\cdots} & {x_{N}}\end{array}\right]
X=
x1x2⋮xLx2x3⋮xL+1⋯⋯⋯xKxK+1⋮xN
2. 分解
接下来对轨迹矩阵进行奇异值分解,注意,这里是对轨迹矩阵进行SVD分解。看资料的时候就是在奇异值分解这里困惑了很久,具体来说就是将
X
\boldsymbol{X}
X 分解为以下形式:
X
=
U
Σ
V
T
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
X=UΣVT 其中
U
\boldsymbol{U}
U 称为左矩阵;
Σ
\boldsymbol{\Sigma}
Σ 仅在主对角线上有值,就是奇异值,其他元素均为零;
V
\boldsymbol{V}
V 称为右矩阵。此外
U
、
V
\boldsymbol{U}、\boldsymbol{V}
U、V 均为单位正交阵,满足
U
U
T
=
I
,
V
V
T
=
I
\boldsymbol{U}\boldsymbol{U}^T=\boldsymbol{I}, \boldsymbol{V}\boldsymbol{V}^T=\boldsymbol{I}
UUT=I,VVT=I。
由于直接对轨迹矩阵分解比较困难,因此首先计算轨迹矩阵的协方差矩阵:
S
=
X
X
T
\boldsymbol{S} = \boldsymbol{X}\boldsymbol{X}^T
S=XXT 接下来对
S
\boldsymbol{S}
S 进行特征值分解得到特征值
λ
1
>
λ
2
>
⋯
>
λ
L
⩾
0
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{L} \geqslant 0
λ1>λ2>⋯>λL⩾0 和对应的特征向量
U
1
,
U
2
,
⋯
,
U
L
U_{1}, U_{2}, \cdots, U_{L}
U1,U2,⋯,UL。此时
U
=
[
U
1
,
U
2
,
⋯
,
U
L
]
\boldsymbol{U} =[U_{1}, U_{2}, \cdots, U_{L}]
U=[U1,U2,⋯,UL],
λ
1
>
λ
2
>
⋯
>
λ
L
⩾
0
\sqrt{\lambda_{1}}>\sqrt{\lambda_{2}}>\cdots>\sqrt{\lambda_{L}} \geqslant 0
λ1>λ2>⋯>λL⩾0为原序列的奇异谱 。并且有
X
=
∑
m
=
1
L
λ
m
U
m
V
m
T
,
V
m
=
X
T
U
m
/
λ
m
,
m
=
1
,
2
,
.
.
.
,
L
\boldsymbol{X}=\sum_{m=1}^{L} \sqrt{\lambda_{m}} U_{m} V_{m}^{T}, \quad V_{m}=\boldsymbol{X}^{\mathrm{T}} U_{m} / \sqrt{\lambda_{m}}, \quad m=1,2,...,L
X=m=1∑LλmUmVmT,Vm=XTUm/λm,m=1,2,...,L 这里
λ
i
\lambda_{i}
λi 对应的特征向量
U
i
U_{i}
Ui 反映了时间序列的演变型,称为时间经验正交函数(T-EOF)。
实际上python已经提供了奇异值分解的函数np.linalg.svd()
可以很方便的计算。关于奇异值分解更详细的介绍可以看这篇博客。
3. 分组
关于分组,文献中很常见的叙述是下面这样:

简单来说将所有的 L L L 个成分分为 c c c 个不相交的组,代表着不同的趋势成分。这样接下来选择主要的成分进行重构得到重构序列。Emmm。。。。这样介绍可真是太简洁明了导致动手实现的时候真是一脸懵。
因此在实现的时候参考了另一个版本,这里将分组和重构放到一块吧。。。。。这个版本有助于实现但是ran半天ran不清哪里是分组,被自己菜哭。。。。。。。。。。

4. 重构
所以这里接分解步。首先计算迟滞序列
X
i
X_i
Xi 在
U
m
U_m
Um 上的投影:
a
i
m
=
X
i
U
m
=
∑
j
=
1
L
x
i
+
j
U
m
,
j
,
0
≤
i
≤
N
−
L
a_{i}^{m}=\boldsymbol{X}_{i} U_m=\sum_{j=1}^{L} x_{i+j} U_{m,j}, \quad 0\leq{i}\leq{N-L}
aim=XiUm=j=1∑Lxi+jUm,j,0≤i≤N−L
X
i
X_i
Xi 表示轨迹矩阵
X
\boldsymbol{X}
X 的第
i
i
i 列,
a
i
m
a_{i}^{m}
aim 是
X
i
\boldsymbol{X}_{i}
Xi 所反映的时间演变型在原序列的
x
i
+
1
,
x
i
+
2
,
…
,
x
i
+
L
x_{i +1} , x_{i +2} ,…, x_{i +L}
xi+1,xi+2,…,xi+L时段的权重, 称为时间主成分(TPC)。看到这里应当发现了,由
a
i
m
a_{i}^{m}
aim 构成的矩阵实际上就是没有归一化的右矩阵, 即
λ
m
V
m
\sqrt{\lambda_{m}}V_{m}
λmVm !
接下来就可以通过时间经验正交函数和时间主成分来进行重建,具体重构过程如下:
x
i
k
=
{
1
i
∑
j
=
1
i
a
i
−
j
k
U
k
,
j
,
1
⩽
i
⩽
L
−
1
1
L
∑
j
=
1
L
a
i
−
j
k
U
k
,
j
,
L
⩽
i
⩽
N
−
L
+
1
1
N
−
i
+
1
∑
j
=
i
−
N
+
L
L
a
i
−
j
k
E
k
,
j
,
N
−
L
+
2
⩽
i
⩽
N
x_{i}^{k}=\left\{\begin{array}{l}{\frac{1}{i} \sum_{j=1}^{i} a_{i-j}^{k} U_{k, j}, \quad 1 \leqslant i \leqslant L-1} \\ \\{\frac{1}{L} \sum_{j=1}^{L} a_{i-j}^{k} U_{k, j}, \quad L \leqslant i \leqslant N-L+1} \\ \\ {\frac{1}{N-i+1} \sum_{j=i-N+L}^{L} a_{i-j}^{k} E_{k, j}, \quad N-L+2 \leqslant i \leqslant N}\end{array}\right.
xik=⎩
⎨
⎧i1∑j=1iai−jkUk,j,1⩽i⩽L−1L1∑j=1Lai−jkUk,j,L⩽i⩽N−L+1N−i+11∑j=i−N+LLai−jkEk,j,N−L+2⩽i⩽N 这样,所有重构序列的和应当等于原序列,即
x
i
=
∑
k
=
1
L
x
i
k
i
=
1
,
2
⋯
,
N
x_{i}=\sum_{k=1}^{L} x_{i}^{k} \quad i=1,2 \cdots, N
xi=k=1∑Lxiki=1,2⋯,N 通常情况下我们使用SSA只是为了提取原序列的主要成分,以去噪为例,我们只需要根据奇异值的大小选择前
k
(
k
≤
L
)
k(k \leq L)
k(k≤L) 个贡献大的成分重构原序列即可。
python程序
#!/usr/bin/python3
# -*- coding: utf-8 -*-
'''
@Date : 2019/11/11
@Author : Rezero
'''
import numpy as np
import matplotlib.pyplot as plt
path = "xxxx" # 数据集路径
series = np.loadtxt(path)
series = series - np.mean(series) # 中心化(非必须)
# step1 嵌入
windowLen = 20 # 嵌入窗口长度
seriesLen = len(series) # 序列长度
K = seriesLen - windowLen + 1
X = np.zeros((windowLen, K))
for i in range(K):
X[:, i] = series[i:i + windowLen]
# step2: svd分解, U和sigma已经按升序排序
U, sigma, VT = np.linalg.svd(X, full_matrices=False)
for i in range(VT.shape[0]):
VT[i, :] *= sigma[i]
A = VT
# 重组
rec = np.zeros((windowLen, seriesLen))
for i in range(windowLen):
for j in range(windowLen-1):
for m in range(j+1):
rec[i, j] += A[i, j-m] * U[m, i]
rec[i, j] /= (j+1)
for j in range(windowLen-1, seriesLen - windowLen + 1):
for m in range(windowLen):
rec[i, j] += A[i, j-m] * U[m, i]
rec[i, j] /= windowLen
for j in range(seriesLen - windowLen + 1, seriesLen):
for m in range(j-seriesLen+windowLen, windowLen):
rec[i, j] += A[i, j - m] * U[m, i]
rec[i, j] /= (seriesLen - j)
rrr = np.sum(rec, axis=0) # 选择重构的部分,这里选了全部
plt.figure()
for i in range(10):
ax = plt.subplot(5,2,i+1)
ax.plot(rec[i, :])
plt.figure(2)
plt.plot(series)
plt.show()
运行程序结果如下,左边是原始序列,右边是按奇异值排序的前十个成分序列,可以看到除了前几个剩余的基本都可以视为噪声序列。
如果取前五个序列重构,最后重构出的序列如下
相比原序列可以看到重构出的序列明显比原序列平滑,但是同时保持了总体的变化情况。
参考资料
https://www.cnblogs.com/endlesscoding/p/10033527.html
基于SSA的GPS坐标序列去噪及季节信号提取