微积分入门(2)

本文详细探讨了微积分中的自然常数e,通过极限的概念解释了e的来源,并解决了当幂指数为-1时积分公式的特殊情况,得出反比例函数的积分公式。同时,文章还介绍了平方根函数的微分公式,展示了从已知微分推导新微分的过程。
摘要由CSDN通过智能技术生成

上一篇文章(微积分入门)我们讲了微分、定积分、不定积分,这一次,我们将更详细的讲解微积分的相关知识

自然常数 e e e 何来

这里的 e e e 指的是这个数:
e ≈ 2.718281828459045 e \approx 2.718281828459045 e2.718281828459045
在《微积分入门》这篇博客,我提到了一个很重要的公式,幂的积分公式:
∫ b a p x k   d x = p k + 1 a k + 1 − p k + 1 b k + 1 \int^a_bpx^k \ dx=\frac{p}{k+1}a^{k+1}-\frac{p}{k+1}b^{k+1} bapxk dx=k+1pak+1k+1pbk+1
但是,不知道大家有没有发现一个问题:当 k = − 1 k=-1 k=1,也就说式子为 ∫ b a 1 p x \int^a_b\frac{1}{px} bapx1 时,公式就失效了,因为分母不能为 0 0 0

我们尝试转换思路,假设 b = 1 , a = x b=1,a=x b=1,a=x,我们可以得到:
∫ 1 x x k d x = 1 k + 1 x k + 1 − 1 k + 1 \int^x_1x^k dx=\frac{1}{k+1}x^{k+1}-\frac{1}{k+1} 1xxkdx=k+11xk+1k+11
这里要用到一个知识:极限,极限就是无限接近,但不达到,就像物理学里的绝对零度,以及光速(指有静止质量的物体)。

极限的表达方式如下:
lim ⁡ x → k … \lim_{x \to k} \ldots xklim
回到原来的问题,计算:
y = lim ⁡ k → − 1 x k + 1 − 1 k + 1 y=\lim_{k \to -1}\frac{x^{k+1}-1}{k+1} y=k1limk+1xk+11

y = 1 y=1 y=1 得:
lim ⁡ k → − 1 x k + 1 − 1 k + 1 = 1 \lim_{k \to -1}\frac{x^{k+1}-1}{k+1} = 1 k1limk+1xk+11=1

k + 1 k+1 k+1 移到右边,得:
lim ⁡ k → − 1 x k + 1 − 1 = k + 1 \lim_{k \to -1}{x^{k+1}-1}= k+1 k1limxk+11=k+1

− 1 -1 1 移到右边,得:
lim ⁡ k → − 1 x k + 1 = 1 + ( k + 1 ) \lim_{k \to -1}{x^{k+1}}=1+ (k+1) k1limxk+1=1+(k+1)
因为幂和根号互为逆运算,所以将此式子转换为 x x x 的解,就是:
x = [ 1 + ( k + 1 ) ] k + 1 = [ 1 + ( k + 1 ) ] 1 k + 1 x=\sqrt[k+1]{[1+(k+1)]}=[1+(k+1)]^{\frac{1}{k+1}} x=k+1[1+(k+1)] =[1+(k+1)]k+11

β = k + 1 \beta = k+1 β=k+1 ,且 β \beta β 趋向于 0 0 0 有:
x = lim ⁡ β → 0 ( 1 + β ) 1 β x=\lim_{\beta \to 0}(1+\beta)^{\frac{1}{\beta}} x=β0lim(1+β)β1

经过计算,我们得到:
x = e x=e x=e

所以说,我们得到了反比例函数的积分公式:
∫ b a 1 x   d x = ln ⁡ ( b a ) \int^a_b \frac{1}{x} \ dx=\ln(\frac{b}{a}) bax1 dx=ln(ab)

其中 ln ⁡ \ln ln 指的是 log ⁡ e \log_e loge,不了解对数的小伙伴可以去百度一下

x \sqrt{x} x 的微分公式

我们知道, y = x y=x y=x 的微分是 1 1 1,然而,我们由此也可以求出 y = x y=\sqrt{x} y=x 的微分,推导过程如下:
1 = x ′ = ( x ⋅ x ) ′ 1=x' =(\sqrt{x} \cdot \sqrt{x})' 1=x=(x x )
由乘积的微分公式得:
= ( x ) ′ x + x ( x ) ′ = 2 [ x ⋅ ( x ) ′ ] =(\sqrt{x})'\sqrt{x} +\sqrt{x}(\sqrt{x})'=2[\sqrt{x} \cdot (\sqrt{x})'] =(x )x +x (x )=2[x (x )]
移项得:
1 2 = x ⋅ ( x ′ ) \frac{1}{2}=\sqrt{x} \cdot (\sqrt{x}') 21=x (x )
转换为 x ′ \sqrt{x}' x 的解:
x ′ = 1 2 x \sqrt{x}'=\frac{1}{2\sqrt{x}} x =2x 1
所以 x ′ \sqrt{x}' x 的微分是 1 2 x \dfrac{1}{2\sqrt{x}} 2x 1

结尾

在这一篇博客中,我们介绍了自然常数 e e e 以及 x \sqrt{x} x 的微分。希望这篇文章对大家有帮助。

给大家推荐一本书,《微积分入门》,神永正博著,通俗易懂,本系列博客就是参考这一本书来编著的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值