知识表示模型汇总分析--Trans系列

本文分析了TransE、TransH、TransR、CTransR和TransD等知识图谱表示学习模型,探讨了它们的原理、优缺点及相互之间的关系。TransE通过向量平移建模,而TransH、TransR和CTransR引入超平面和关系空间以处理复杂关系。TransD进一步考虑实体类型,动态映射矩阵以提高表示能力。
摘要由CSDN通过智能技术生成

作者:孙天祥
链接:https://zhuanlan.zhihu.com/p/43436288
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

因为还根据自己的理解补充了点儿内容,就标为原创了。下面是正文:
 

近年来,以深度学习为代表的表示学习迅速发展,在很多领域都取得了巨大进展。简而言之,表示学习将要描述的对象表示为低维稠密向量,这也被称为分布式表示,从而有效解决了数据稀疏问题,并且便于在低维语义空间中进行计算。将表示学习应用于知识图谱(Knowledge Graph, KG),即是知识表示学习

在当前的主流知识库中,知识被存储为 (h, r, t) 的三元组形式,其中 h 表示头实体, r 表示联系, t 表示尾实体。知识表示学习的任务就是学习 h, r, t 的分布式表示(也被叫做知识图谱的嵌入表示(embedding))。

目前,知识表示学习方法从实现形式上可以分为两类:基于结构的方法基于语义的方法。基于结构的嵌入表示方法包括TransE, TransH, TransR&CTransR, TransD等,这类方法从三元组的结构出发学习KG的实体和联系的表示;基于语义的嵌入表示方法包括NTN, SSP, DKRL等,这类方法从文本语义的角度出发学习KG的实体和联系的表示。

知识表示学习从发展来看可以分成两个阶段,以2013年Borders等人受Mikolov发现的语义空间中词向量的平移不变现象启发,从而提出了翻译模型(TransE)为分割。在TransE之前,有Structed Embedding, Semantic Matching Energy等模型,在TransE之后,人们在此基础上进行改进,依次提出了TransH, TransR, TransD等模型。接线来介绍基于TransE的改进模型。

作者:孙天祥
链接:https://zhuanlan.zhihu.com/p/43436288
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

TransE


论文:Translating Embeddings for Modeling Multi-relational Data. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, Oksana Yakhnenko. NIPS 2013.

我们用 h 表示头实体向量,用 t 表示尾实体向量,用 r 表示关系向量,TransE模型的目标就是让 t-h 尽可能地等于 r ,即 t-h\approx r 。其评分函数为:

f_r(h, t) = \lVert h+r-t\rVert _{L_1/L_2}

显然,对于正确的三元组,应该有较低的得分。在训练过程中,使用等级损失函数,这是因为在当前情况下我们没有就标签而言的监督,只有一对正确项 (h,r,t)\in \Delta 和不正确项 (h',r',t')\in \Delta' ,我们的目的是让正确项的得分比不正确项高。这种情况出现在我们只有正例时,知识图谱就是这种情况,我们只知道正确的三元组(golden triplet),再通过破坏一个正例来生成负例。等级损失就适用于这种情况,因此我们定义损失函数:

L = \sum_{(h,r,t)\in \Delta}\sum_{(h',r',t')\in \Delta'}\max (f_r(h,t)+\gamma -f_{r'}(h',t'),0).

上式中的 \gamma 表示正例和负例得分的最小间隔(margin),实际使用时常取 \gamma=1 .

博主注:

我们的目标是让f(h,t)最小,让f(h',t')最大。开始我觉得上面的公式不对,

  • 5
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值