bagging的思路和原理分析 Bagging是经典的集成学习方法 [6] ,是通过综合多个弱学习器的学习结果,共同完成同一个学习任务的过程。其集成原理为:有放回重复抽取N个样本集,每个样本集中有M个样本,分别训练N个学习模型,从而获得N个弱学习器[7]。 其具体算法如下: (1) 在原数据集中有放回任意抽取M个样本,共进行N次,获得具有M个样本的N个样本集; (2) 将N个样本集分别对应训练成N个弱学习模型,得到N个弱学习器; (3) 将N个弱学习器输出结果对应投票,得到最终分类结果。