集成学习-Task08 Bagging 的原理和案例分析

bagging的思路和原理分析

Bagging是经典的集成学习方法 [6] ,是通过综合多个弱学习器的学习结果,共同完成同一个学习任务的过程。其集成原理为:有放回重复抽取N个样本集,每个样本集中有M个样本,分别训练N个学习模型,从而获得N个弱学习器[7]。
其具体算法如下:
(1) 在原数据集中有放回任意抽取M个样本,共进行N次,获得具有M个样本的N个样本集;
(2) 将N个样本集分别对应训练成N个弱学习模型,得到N个弱学习器;
(3) 将N个弱学习器输出结果对应投票,得到最终分类结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值