CUMT常微分 相关笔记 截图

        按照我的学,意味着期末高分,平时分看老师,如果你遇到平时比较松的老师就还好,我遇到的老师相对比较严格,所以就没办法。

写在前面:吃水不忘挖井人

CUMT考试大纲:

感谢宋浩老师和脱秋菊老师,下面是相应课程链接

常微分方程配套教学视频-宋浩老师官方

(笔记食用方法:结合宋老师b站的课程和我记的笔记,大家可以把我的粘贴下来,然后自己优化,也可以直接食用(内容很细,不看视频也能看懂,记得先搞懂框架,就是常微分到底是干啥的,然后再分而治之,逐个解决问题,带着问题学习))

送给大家两句话:

知其然,更要知其所以然。

纵观全局,分而治之。

禁止将本笔记用于任何盈利,本笔记只用于知识讲解和学习,最终解释权归作者所有!!做一个高素质程序员,开源才是王道!!!!!

第一章1.微分方程的基本概念

下面的方程就是一个一阶微分方程(微分方程具体是几阶取决于他的因变量对自变量的导数的阶数,比如:一阶导就是一阶方程,二阶导就是二阶方程....n阶导就是n阶方程)

板书笔记:

  1. 什么是微分方程(主要就是区别于代数方程)
  2. 分类:ODE和PDE(根据自变量的个数,对自变量的导数) 咱只需要了解ODE即可
  3. 方程的阶数(一阶和高阶)
  4. 方程的线性(如果微分方程的各阶导数都是一次幂的)和非线性
  5. 方程的解(通解 和 特解) (满足微分方程)(n阶微分方程要求出特解,必须有n个初值条件才行)
  6. 显式通解(一目了然) 隐式通解(有中间量或者没有化成最简)

 

第二章 初等积分法

第二章第一节:分离变量法

  1. 变量分离方程:dy/dx=f(x,y)可以被分解成为dy/dx=g(x)*h(y)
  2. 变量分离方程的解法
  3. 例题

     图片中的编号对应于上面的目录编号:

 总结:先观察f(x,y)是否可以分解为g(x)*h(y)的形式:如果可以分解,然后就验证h(y)是否含有零点,如果含有零点,写出y对应的取值,然后考虑非零的情况,对两边进行积分。(分离变量,两边积分)

第二章第二节:变量替换法

第二章第二节-1:变量替换法(主要针对的是齐次方程)

方法的作用:有些一阶方程不是变量分离方程,但是我们可以通过某些变量的替换,把这个不是变量分离的方程化成变量分离方程。

齐次方程:

  1. 什么是齐次方程呢?(各项的幂次相同)
  2. 零次齐次函数:y/x 为自变量
  3. 齐次方程式一定可以化成变量分离方程的!!!
  4. 例子

 

 第二章第二节-2:可化为齐次方程的方程

        主要考虑的是两种可能:可以直接从齐次方程化为变量分离方程的用一个变量替换就可以了,不能以化为变量分离方程的先化成齐次方程,然后变量替换,最后再化成变量分离方程

  1. 什么样的方程可以化为齐次方程呢?(右端自变量是两个一次函数的商的方程)
  2. 第一种情况:两个一次方程是重合的方程
  3. 第二种情况:两个一次方程是平行的方程
  4. 第三种情况:两个一次方程是相交的方程
  5. 例子

 最简单常见的微分情况:

 5.例子

 1. 第三种情况:两个一次方程是相交的方程 第二章第二节-3:某些特殊的变量替换

  1. 将等式右边ax+by整体的部分替换为u
  2. 先把等式右边化简,然后观察形式(出现了形如xy的形式,就整体替换xy就可以了)

第二章第二节-4:一阶线性方程

  1. 一阶线性非齐次方程
  2. 一阶线性齐次方程
  3. 例子 (例子中x是应变量,y是自变量,无伤大雅)
  4. 公式大法(不用死记硬背,大学老师教的,不过我的建议是学会常数变易法,因为这个方法真是太奇妙了,拉格朗日想了11年的精华,你难道就不想弄懂????)

番号1-5是常数变易法的步骤:

  1. 写出非齐次方程对应的齐次方程,并求出齐次方程的通解
  2.  然后把齐次方程通解中的常数C看成C(x) :这个方法的精髓在于从齐次向非齐次(两个方程相加)转换,可以是两个方程相乘求导,也可以是两个方程相加然后求导,很明显这题是前者,然后就是注意e^p(x)求导之后是e^p(x) *p'(x)
  3. 把第二步中表示的y回代到非齐次方程中
  4. 然后化简求出C(x)
  5. 最后就是把第四步中求出的C(x)重新带到第二步中就求出y了

 然后还有一种方法就是巧记公式大法:这里用到了积分因子的思想:

【积分因子是e^-(积分p(x))】

第二章第二节-5: 伯努利(雅各布伯努利)方程

  1. 方程特征
  2. 例题

  第二节的核心思想就是想法设法把方程通过变量替换化成可以进行分离变量的方程

第二章第三节:全微分方程(恰当方程)

第二章第三节-1:全微分方程的概念与判断

 上面的条件是Mdx+Ndy=0是全微分方程的充分必要条件

必要性证明:(微分交换次序结果不受影响)

 充分性证明:(求通解u(x,y)=c的过程)

第二章第三节-2:如果一个方程式全微分方程,那么怎么求u(x,y)=c

1.凑微分法(把f(x)dx和f(y)dy的项单独挪到一边,剩下的部分用积分的方式求解)

 2.不定积分法(为了便于理解,我认为就是u(x,y)=m对于x的积分(因为m=u关于x的偏导数)加上x,y散落的函数等等即可)

第二章第三节-3:积分因子,如果一个方程不是全微分方程,怎么化成全微分方程,在两边同时乘一个积分因子

  1. 首先给出积分因子的定义(使一个不是全微分的方程变成一个全微分方程)
  2. 给出全微分方程的通式
  3. 乘以积分因子之后全微分方程满足的条件
  4. 当积分因子只与x有关时
  5. 当积分因子只与y有关时
  6. 给出当积分因子只与x有关时的通式(当积分因子只与y有关时把指数部分换成除以-M 和dy即可)
  7. 例子(四步走)
  8. 积分因子的公式:注意取得是-M和正N,正负号不要搞混了

 

 第二章第三节-4:参数法(隐式微分方程)

情形1:

 情形2:

高阶微分方程(三种情况三种解法)

  1.  一般的积分n次积回去即可
  2. 缺y型:令最低阶为P即可
  3. 缺X型:注意第二步变换即可
  4. 当同时缺x和缺y的时候优先考虑缺y的情况

第三章

第三章第一节:解的存在唯一性定理之命题一

第四章()

第五章:线性微分方程组

第五章第一节第一部分:一阶线性微分方程组的基本概念

  1. 一阶微分方程(含有的x可以是任意幂次的)
  2. 微分方程的解
  3. 微分方程的通解
  4. 一阶线性微分方程(含有的x的幂次只能是一次或者零次常数项)
  5. 一阶线性微分方程组的矩阵表达式
  6. 初值问题

 

 

初值问题是指在数学或物理等领域中,在某个时刻或位置给定一些条件,然后解决这些条件下的偏微分方程或常微分方程。 

第五章第一节第二部分:一阶线性微分方程组和高阶线性微分方程的关系

1.一个高阶微分方程变换为一阶线性微分方程组

 下面的红色部分就成了一阶线性微分方程组的初值问题

转化成对应的矩阵形式:

等价性需要注意的是:任意给定一个一阶线性微分方程组是不一定能够重新转换成一个高阶方程的

第五章第一节第三部分(解的存在唯一性定理)

1.范数的基本概念和定义以及性质

2.向量序列和向量函数序列以及向量函数级数的收敛定义

 3.存在唯一性定理

 第五章第一节第四部分:一阶齐次线性微分方程组解空间的结构

1.齐次方程组的定义(没有常数项F(t))

2.叠加原理

 3.组向量函数线性相关

  1. 定义(注意线性相关(不全为0)和线性无关的条件(全为0))

  1. 举例

 

4.线性相关的一些结论(朗斯基行列式)

如果向量函数组X(t)线性相关那么其对应的朗斯基行列式等于0

注意朗斯基行列式为0不能推出线性相关!!!!(定理5.3逆命题不成立)

5.线性无关的相关结论(定理5.4是充要条件)(而且X(t)是齐次方程组的解,这个条件是定理5.3不具备的

6.定理5.3 和 定理5.4联合推出了下面的结论(W(t)要么恒等于0要么处处不为0,不可能出现某些t为0,某些t又不为0的情况)

 7.定理5.5

8.通解结构定理(说明了每一个解都存在一组对应的常数)

 

 9.基本解组(注意基本解组不唯一)

 10.矩阵对角上的和-矩阵的迹

11.liouville公式

 第五章第一节第五部分:一阶齐次线性微分方程组的基解矩阵的性质

  1.  什么是解矩阵
  2. 什么是基解矩阵(特殊的解矩阵)
  3. 齐次方程的通解
  4. 基解矩阵的充要条件(解矩阵式基解矩阵的条件)

基解矩阵如果存在的话肯定是不唯一的

 结合5.10 我们还有: 基解矩阵之间的关系

 例题1:已知方程组求通解

1.验证解矩阵(验证每一列是不是满足方程组,如果满足就是解矩阵)

2.验证基解矩阵(解矩阵的行列式在某个t0不等于0,所以在验证的时候可以随便取一个t0只要验证成功即可,不用特意求出通式)

3.利用通解结构定理写出通解等于基解矩阵乘以常数列向量

 例题2:已知基解矩阵求方程组

 线性代数中用到的一些矩阵相关的知识:

1.伴随矩阵

 快速求伴随矩阵的方法:

2.  3阶矩阵行列式的快速求法

矩阵行列式的快速求法

3.   3阶矩阵的逆的快速求法

 4.矩阵的迹:

5.非奇异矩阵等价于可逆矩阵等价于它的行列式不等于0等价于每一列线性无关

 第五章第一节第六部分:一阶非齐次线性微分方程组解集合的性质

整体思路就是已知非齐次方程对应的齐次方程的通解之后,利用这个通解配合常数变易法求出非齐次方程组的特解“X一八”,然后就求出了非齐次方程组的通解

1.非齐次方程组的通解结构定理(说白了就是:非齐次方程组的通解=齐次方程组的通解+非齐次方程组的某一个特解)

 2.如果已知齐次方程组的fai(t),那么非齐次方程组的特解x一八是能够用fai(t)表示出来的(用的方法就是常数变易法)

 

 

 3.例子:求非齐次方程组的通解(所以说一定要掌握常数变易法求公式的方法和技巧)

 第五章第二节:一阶常系数线性微分方程组

 1.矩阵的指数表达形式

 2.矩阵指数函数的性质(性质二可以根据性质一得到)

 3.矩阵函数的指数表达形式(说明了级数的和是一致收敛的)

 4. exp(At)就是一阶常系数微分方程X'=AX的基解矩阵

 所以要计算一阶常系数微分方程的基解矩阵我们只需要计算exp(At)即可,怎么计算exp(At)呢?

我们只需要 把exp(At)用洛必达法则展开即可,然后前面我们又证明了,洛必达法则展开的级数的和一定是收敛的,所以是可以用这个收敛的和表示的矩阵来表示exp(At)

5.一些性质

X(t) :通解 

exp(At):基解矩阵

第2个性质可以用来求基解矩阵

 

 例题:求基解矩阵

例一和例二具有特殊性

例1(特殊的对角矩阵)

 例2(C的乘积是零矩阵)

     注意:                                                            

 第五章第二节第二部分

 本质:

1.λ是A的特征值 C是λ对应的特征向量,所以求解问题变成了求常系数矩阵A的特征值和特征向量的问题

2.例题

1.特征根为实根

  2.特征根为共轭复根

证明章节 宋老师b占视频你值得拥有

1.皮亚诺存在定理:说白了就是你已知条件1,然后只要满足条件2,那么就有结论

条件:

  1.    x'=f(t,x) ,  x(t0)=x0
  2.  f(t,x)在 |t-t0|<=a 和 |x-x0|<=b 矩形区域上连续

结论:

  1. 那么条件1联立的方程至少有一个解x=φ(t)
  2.  x=φ(t) 在区间I=[t0-h,t0+h]上
  3. h的取值为 min{a, b/M }
  4. M是|f(t,x)|的上界

解题的目标:解出区间 I 

解题步骤:

  1. 求出f(t,x)的上界M 
  2. 求出h的取值
  3. 求出区间I

2.解的存在性和唯一性:说白了就是你已知条件1,然后满足条件2,又满足条件3,那么就有结论

条件:

  1. f(t,x)=x' , x(t0)=x0
  2.  f(t,x)在 |t-t0|<=a 和 |x-x0|<=b 矩形区域上连续
  3. | f(t,x1)-f(t,x2)|<=L|x1-x2| :x满足lishitz条件

结论:

  1. 条件1在区间上有且只有一个解x=φ(t)
  2.  x=φ(t) 在区间I=[t0-h,t0+h]上
  3. h的取值为 min{a, b/M }
  4. M是|f(t,x)|的上界

3.皮卡迭代证明解的存在性

掌握等价积分方程和皮卡迭代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值