线性代数学习笔记7

本文介绍了对称矩阵的性质,包括它们的特征值为实数且具有完全正交的特征向量。详细讨论了如何证明这些性质,并解释了正定矩阵的概念,强调正定矩阵的特征值和主元均为正。此外,提到了奇异值分解在理解矩阵空间结构中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第二十六集  对称矩阵及正定性

对称矩阵
对称矩阵 A=AT 特征值为实数,具有完全正交的特征向量
这里的“有”,是指可以选出一套完全正交的特征向量。通常情况下,如果特征值互不相同,那么每个特征值的特征向量是在一条线上(特征向量空间是一维的),那些线是垂直的。但是如果特征值重复,那就有一整个平面的特征向量,在那个平面上,我们可以选择垂直的向量(比如单位矩阵)。
如果A 具有n 个线性无关的特征向量,可以对角化得到 A=SΛS1 。而对于对称矩阵, A=QΛQ1=QΛQT ,其中Q 为正交矩阵,列向量为标准正交基(见线性代数学习笔记4),这个公式本身还显示了矩阵的对称性( A=QΛQT=(QΛQT)T=AT )。
矩阵能够进行这种分解,在数学上称为“谱定理”,“谱”是指矩阵特征值的集合,在物理上称之为“主轴定理”。
证明实特征值
实数矩阵A 具有特征值 λ 和特征向量x,则有 Ax=λx 。如果一个实矩阵有一个复数特征值 λ 和一个复数特征向量 x ,则它必然有其共轭特征值 λ¯ 和共轭特征向量 x¯ ,即其共轭复数满足 Ax¯=λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值