关于一些基础矩阵性质的直观理解

矩阵性质

  • 行列式分行可加
  • ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A(计算行列式时行列地位相等)
  • 两行相同,行列式为0,两行成比例,行列式为0,消法变换(ki+j)不改变行列式
  • 可逆充要条件)A*为伴随矩阵,则有 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE ∣ A ∣ ≠ 0 |A|\ne0 A=0时有 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A
  • 初等变换不改变矩阵的秩
  • A为mxn,B为nxp,有 R ( A B ) ≥ R ( A ) + R ( B ) − n R(AB) \ge R(A)+R(B)-n R(AB)R(A)+R(B)n
  • 线性方程组 A x = b , A ∈ R m × n Ax=b,A\in\mathbb{R^{m\times n}} Ax=bARm×n,可以看成在A张成子空间中找b,因为 R ( A , b ) ≥ R ( A ) R(A,b)\ge R(A) R(A,b)R(A),如果 R ( A , b ) > R ( A ) R(A,b)>R(A) R(A,b)>R(A)则A张成空间不能表达b,所以 A x = b Ax=b Ax=b有解充要条件为 R ( A , b ) = R ( A ) R(A,b)=R(A) R(A,b)=R(A),在此条件下, R ( A ) R(A) R(A)与A的列数 n n n的关系(列向量组是否线性相关)决定解的数量。
    如果列向量组线性相关( R ( A ) < n R(A)<n R(A)<n),则存在对张成空间没有作用的向量,可以找到最小的线性无关向量组作为基(极大无关向量祖),张成 R ( A ) R(A) R(A)维空间,通过基的线性组合可以得到余下的 n − R ( A ) n-R(A) nR(A)个向量,通过调整基和无用向量的系数可以得到无穷多解
    如果列向量线性相关( R ( A ) = n R(A)=n R(A)=n),n个向量都用来张成空间,此时存在唯一解
  • R ( A + B ) ≤ R ( A ) + R ( B ) R(A+B)\le R(A)+R(B) R(A+B)R(A)+R(B),A+B可以由A和B的极大无关组表示,但是A和B的极大无关组放在一起不一定线性无关,所以是 ≤ \le 而且在放在一起还是线性无关时取等
  • R ( A B ) ≤ min ⁡ ( R ( A ) , R ( B ) ) R(AB)\le \min(R(A),R(B)) R(AB)min(R(A),R(B)),另 C = A B C=AB C=AB,C和A行数相同,可以认为C的列向量组是由A的列向量组在B的线性组合下得到的,所以必有 R ( C ) ≤ R ( A ) R(C)\le R(A) R(C)R(A),由于 R ( C T ) = R ( B T A T ) = R ( C ) R(C^T)=R(B^TA^T)=R(C) R(CT)=R(BTAT)=R(C),同理可以得到 R ( C ) ≤ R ( B T ) = R ( B ) R(C)\le R(B^T)=R(B) R(C)R(BT)=R(B),得证
  • R ( A T A ) = R ( A ) R(A^TA)=R(A) R(ATA)=R(A) A x = 0 Ax=0 Ax=0 A T A x = 0 A^TAx=0 ATAx=0同解。结合上一个不等式提出一个不太直观的理解:两个矩阵乘法 A B AB AB可以看成以A为基向量按B规则做线性组合得到的新基,B本身也可以看作以E为基向量按B规则作线性组合得到的基( B = E B B=EB B=EB),B的每一个列向量相当于一条生成基的规则。规则的秩和基的秩对于新基的秩有同等程度的影响,所以有 R ( A B ) ≤ min ⁡ ( R ( A ) , R ( B ) ) R(AB)\le \min(R(A),R(B)) R(AB)min(R(A),R(B)),可以看出,通过向量乘法不能扩张维度,只能坍缩或者维持
  • 特征多项式 ψ ( λ ) = ∣ λ E − A ∣ = λ n + c n − 1 λ n − 1 + ⋯ + c 1 λ + c 0 \psi(\lambda)=|\lambda E-A|=\lambda^n+c_{n-1}\lambda^{n-1}+\dots+c_1\lambda+c_0 ψ(λ)=λEA=λn+cn1λn1++c1λ+c0则有 c n − 1 = − t r A , c 0 = ( − 1 ) n ∣ A ∣ c_{n-1}=-trA,c_0=(-1)^n|A| cn1=trA,c0=(1)nA,计算特征多项式需要计算行列式,第一行不选含有 λ \lambda λ,则所选元素列的含 λ \lambda λ元素亦不能选(行列式的性质),所以n次项和n-1次项均来自行列式对角元素乘积 ( λ − a 11 ) ( λ − a 22 ) … ( λ − a n n ) (\lambda-a_{11})(\lambda-a_{22})\dots(\lambda-a_{nn}) (λa11)(λa22)(λann) λ = 0 \lambda=0 λ=0则有 ψ ( 0 ) = ∣ − A ∣ \psi(0)=|-A| ψ(0)=A
  • n阶矩阵A与对角阵相似的充要条件是A存在n个线性无关的特征向量
  • 正交矩阵要求单位正交,A为正交矩阵的充要条件是 A T A = E A^TA=E ATA=E
  • 实对称矩阵不同特征值对应的特征向量正交
  • 实对称矩阵A必能被相似对角化,对角线为A的全部特征值,相似因子可以是正交矩阵(标准正交)。
  • n阶实对称矩阵A的特征 λ 0 \lambda_0 λ0为k重,则有 R ( λ 0 E − A ) = n − k R(\lambda_0E-A)=n-k R(λ0EA)=nk
    A对角化为B,有 P − 1 A P = B λ E − A = λ P E P − 1 − P B P − 1 = P ( λ E − B ) P − 1 P^{-1}AP=B \\\begin{aligned}\lambda E-A&=\lambda PEP^{-1}-PBP^{-1}\\&=P(\lambda E-B)P^{-1}\end{aligned} P1AP=BλEA=λPEP1PBP1=P(λEB)P1所以 λ E − A \lambda E-A λEA λ E − B \lambda E-B λEB相似秩相等, λ E − B \lambda E-B λEB为对角阵且在B为对应特征值 λ \lambda λ的位置为0,其余不为0,所以秩为n-k,对应的 ( λ E − B ) x = 0 (\lambda E-B)x=0 (λEB)x=0的有k个线性无关特征向量
  • n阶矩阵A,B,如果存在可逆P使得 P T A P = B P^TAP=B PTAP=B,说A与B合同
  • 对于二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx,A是一个对称矩阵,必存在正交矩阵P使得 P − 1 A P = P T A P = B P^{-1}AP=P^TAP=B P1AP=PTAP=B,B是对角阵,做映射 x = P y x=Py x=Py,则有 f ( x ) = ( P y ) T A P y = y T P T A P Y = y T B y f(x)=(Py)^TAPy=y^TP^TAPY=y^TBy f(x)=(Py)TAPy=yTPTAPY=yTBy,当P为正交矩阵时,AB不仅合同还相似,很多可用的性质
  • 如果二次型任取非零x有 f ( x ) > 0 f(x)>0 f(x)>0则称f为正定二次型,A为正定矩阵, ≥ \ge 则为半正定,负号类似
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值