常微分方程(四)

四、常系数线性方程

1.高阶一维齐次方程的基解矩阵

  • 考虑 n n n维线性微分方程 d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n x = f ( t ) \frac{d^{n}x}{dt^{n}}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\cdots+a_nx=f(t) dtndnx+a1dtn1dn1x++anx=f(t),如果引入微分算子 D = d d t D=\frac{d}{dt} D=dtd的记号,可以化简为 P ( D ) x = f ( t ) P(D)x=f(t) P(D)x=f(t),其中 P ( D ) : = D n + a 1 D n − 1 + ⋯ + a n − 1 D + a n P(D):=D^n+a_1D^{n-1}+\cdots+a_{n-1}D+a_n P(D):=Dn+a1Dn1++an1D+an P ( D ) P(D) P(D)是关于 D D D的多项式,称为算子多项式

  • 微分算子 D D D可以看作是连续函数空间 C 0 ( J ) C^0(J) C0(J)上函数到函数的映射,这里 J J J是函数的定义域。算子 D D D的定义域为连续可微函数空间 C 1 ( J ) C^1(J) C1(J),这是 C 0 ( J ) C^0(J) C0(J)的一个子空间。可以看出, C 0 ( J ) C^0(J) C0(J) C 1 ( J ) C^1(J) C1(J)都是线性空间,而算子 D D D是上面的一个线性算子

  • 算子多项式可以进行类似于代数运算的因式分解或因式相乘展开,因此微分算子 D D D运算中也满足二项式定理等,即 ( D + λ ) m = ∑ k = 0 m C m k D k λ m − k (D+\lambda)^m=\sum^m_{k=0}C^k_mD^k\lambda^{m-k} (D+λ)m=k=0mCmkDkλmk,其中 D D D是微分算子, λ \lambda λ是常数

  • 对于齐次方程 d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n x = 0 \frac{d^{n}x}{dt^{n}}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\cdots+a_nx=0 dtndnx+a1dtn1dn1x++anx=0的通解,可以采用 E u l e r Euler Euler待定指数函数法,也就是寻求形如 x ( t ) = e λ t x(t)=e^{\lambda t} x(t)=eλt的解,其中 λ \lambda λ是待定指数

  • 设多项式 P ( λ ) = λ n + a 1 λ n − 1 + ⋯ + a n − 1 λ + a n = 0 P(\lambda)=\lambda^n+a_1\lambda^{n-1}+\cdots+a_{n-1}\lambda+a_n=0 P(λ)=λn+a1λn1++an1λ+an=0 n n n个互异 λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,,λn的根,则 e λ 1 t , ⋯   , e λ n t e^{\lambda_1 t},\cdots,e^{\lambda_n t} eλ1t,,eλnt是方程 d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n x = 0 \frac{d^{n}x}{dt^{n}}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\cdots+a_nx=0 dtndnx+a1dtn1dn1x++anx=0的解

  • 设多项式方程 P ( λ ) = λ n + a 1 λ n − 1 + ⋯ + a n − 1 λ + a n = 0 P(\lambda)=\lambda^n+a_1\lambda^{n-1}+\cdots+a_{n-1}\lambda+a_n=0 P(λ)=λn+a1λn1++an1λ+an=0只有 r r r个互异的根,它们分别有重数 n 1 , ⋯   , n r n_1,\cdots,n_r n1,,nr(自然 n 1 + ⋯ + n r = n n_1+\cdots+n_r=n n1++nr=n,则 e λ 1 t t e λ 1 t ⋯ t n 1 − 1 e λ 1 t ⋯ ⋯ ⋯ ⋯ e λ r t t e λ r t ⋯ t n r − 1 e λ r t \begin{matrix}e^{\lambda_1 t}&te^{\lambda_1 t}&\cdots&t^{n_1-1}e^{\lambda_1 t}\\\cdots&\cdots&\cdots&\cdots&\\e^{\lambda_r t}&te^{\lambda_r t}&\cdots&t^{n_r-1}e^{\lambda_r t}&\end{matrix} eλ1teλrtteλ1tteλrttn11eλ1ttnr1eλrt构成齐次方程 d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n x = 0 \frac{d^{n}x}{dt^{n}}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\cdots+a_nx=0 dtndnx+a1dtn1dn1x++anx=0的基本解组

    • e λ 1 t t e λ 1 t ⋯ t n 1 − 1 e λ 1 t ⋯ ⋯ ⋯ ⋯ e λ r t t e λ r t ⋯ t n r − 1 e λ r t \begin{matrix}e^{\lambda_1 t}&te^{\lambda_1 t}&\cdots&t^{n_1-1}e^{\lambda_1 t}\\\cdots&\cdots&\cdots&\cdots&\\e^{\lambda_r t}&te^{\lambda_r t}&\cdots&t^{n_r-1}e^{\lambda_r t}&\end{matrix} eλ1teλrtteλ1tteλrttn11eλ1ttnr1eλrt表示的是 n n n个函数,而不是一个矩阵,因为第一行有 n 1 n_1 n1个函数,最后一行有 n r n_r nr个函数,重数不一定相等, n 1 + ⋯ + n r = n n_1+\cdots+n_r=n n1++nr=n,每一行的函数个数相加就是 n n n个线性无关的解函数

    • 证明一般形式 e λ t t l e^{\lambda t}t^l eλttl d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n x = 0 \frac{d^{n}x}{dt^{n}}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\cdots+a_nx=0 dtndnx+a1dtn1dn1x++anx=0方程的解,只需证明 P ( D ) ( e λ t t l ) = 0 P(D)(e^{\lambda t}t^l)=0 P(D)(eλttl)=0

      • 乘积函数求导的 L e i b n i z Leibniz Leibniz公式 ( u v ) ( m ) = ∑ k = 0 m C m k u ( k ) v ( m − k ) (uv)^{(m)}=\sum^m_{k=0}C^k_mu^{(k)}v^{(m-k)} (uv)(m)=k=0mCmku(k)v(mk)

      • D m ( e λ t t l ) = ∑ k = 0 m C m k ( e λ t ) ( k ) ( t l ) ( m − k ) = ∑ k = 0 m C m k λ k e λ t D m − k t l = e λ t ( ∑ k = 0 m C m k λ k D m − k t l ) = e λ t ( ∑ k = 0 m C m k λ k D m − k ) t l = e λ t ( D + λ ) m t l D^m(e^{\lambda t}t^l)=\sum_{k=0}^mC^k_m(e^{\lambda t})^{(k)}(t^l)^{(m-k)}=\sum_{k=0}^mC^k_m\lambda^ke^{\lambda t}D^{m-k}t^l=e^{\lambda t}(\sum_{k=0}^mC^k_m\lambda^kD^{m-k}t^l)=e^{\lambda t}(\sum_{k=0}^mC^k_m\lambda^kD^{m-k})t^l=e^{\lambda t}(D+\lambda)^mt^l Dm(eλttl)=k=0mCmk(eλt)(k)(tl)(mk)=k=0mCmkλkeλtDmktl=eλt(k=0mCmkλkDmktl)=eλt(k=0mCmkλkDmk)tl=eλt(D+λ)mtl

      • P ( D ) ( e λ t t l ) = e λ t P ( D + λ ) t l P(D)(e^{\lambda t}t^l)=e^{\lambda t}P(D+\lambda)t^l P(D)(eλttl)=eλtP(D+λ)tl

      • 算子多项式 P ( D ) P(D) P(D)作用于 t l t^l tl时,求导次数 m > l m>l m>l时失效,即 D m ( t l ) = 0 , m > l D^m(t^l)=0,m>l Dm(tl)=0,m>l P ( D + λ ) P(D+\lambda) P(D+λ)是关于 D D D的多项式函数,将其在 D = 0 D=0 D=0处展开且略去 D D D的次数大于 l l l的情况, P ( D + λ ) = P ( λ ) + P ′ ( λ ) 1 ! D + ⋯ + P ( l ) ( λ ) l ! D l P(D+\lambda)=P(\lambda)+\frac{P'(\lambda)}{1!}D+\cdots+\frac{P^{(l)}(\lambda)}{l!}D^l P(D+λ)=P(λ)+1!P(λ)D++l!P(l)(λ)Dl

      • P ( D ) ( e λ t t l ) = e λ t P ( D + λ ) t l = e λ t ( P ( λ ) t l + l P ′ ( λ ) t l − 1 + ⋯ + P ( l ) ( λ ) ) P(D)(e^{\lambda t}t^l)=e^{\lambda t}P(D+\lambda)t^l=e^{\lambda t}(P(\lambda)t^l+lP'(\lambda)t^{l-1}+\cdots+P^{(l)}(\lambda)) P(D)(eλttl)=eλtP(D+λ)tl=eλt(P(λ)tl+lP(λ)tl1++P(l)(λ))

      • P ( λ ) = ( λ − λ i ) n i Q ( λ ) ⇒ P ( λ i ) = 0 P(\lambda)=(\lambda-\lambda_i)^{n_i}Q(\lambda)\Rightarrow P(\lambda_i)=0 P(λ)=(λλi)niQ(λ)P(λi)=0 P ′ ( λ ) = n i ( λ − λ i ) n i − 1 Q ( λ ) + ( λ − λ i ) n i Q ′ ( λ ) ⇒ P ′ ( λ i ) = 0 P'(\lambda)=n_i(\lambda-\lambda_i)^{n_i-1}Q(\lambda)+(\lambda-\lambda_i)^{n_i}Q'(\lambda)\Rightarrow P'(\lambda_i)=0 P(λ)=ni(λλi)ni1Q(λ)+(λλi)niQ(λ)P(λi)=0 ⋯ \cdots P ( n i − 1 ) ( λ i ) = 0 P^{(n_i-1)}(\lambda_i)=0 P(ni1)(λi)=0,因此只需 l ≤ n i − 1 l\le n_i-1 lni1 P l ( λ i ) = 0 P^{l}(\lambda_i)=0 Pl(λi)=0

      • l ≤ n i l\le n_i lni时, P ( D ) ( e λ i t t l ) = e λ i t P ( D + λ i ) t l = e λ i t ( P ( λ i ) t l + l P ′ ( λ i ) t l − 1 + ⋯ + P ( l ) ( λ i ) ) = e λ i t ( 0 × t l + l × 0 × t l − 1 + ⋯ + 0 ) = 0 P(D)(e^{\lambda_i t}t^l)=e^{\lambda_i t}P(D+\lambda_i)t^l=e^{\lambda_i t}(P(\lambda_i)t^l+lP'(\lambda_i)t^{l-1}+\cdots+P^{(l)}(\lambda_i))=e^{\lambda_i t}(0\times t^l+l\times0\times t^{l-1}+\cdots+0)=0 P(D)(eλittl)=eλitP(D+λi)tl=eλit(P(λi)tl+lP(λi)tl1++P(l)(λi))=eλit(0×tl+l×0×tl1++0)=0,此时, e λ i t t l e^{\lambda_i t}t^l eλittl满足 P ( D ) e λ i t t l = 0 P(D)e^{\lambda_i t}t^l=0 P(D)eλittl=0,即此时 e λ i t t l e^{\lambda_i t}t^l eλittl是齐次方程 P ( D ) x = 0 P(D)x=0 P(D)x=0的解

      • 因此,只需 t t t的次数 l l l小于等于对应特征值 λ i \lambda_i λi的重数 n i n_i ni时, e λ i t t l e^{\lambda_i t}t^l eλittl就是齐次方程的解,因此 e λ 1 t t e λ 1 t ⋯ t n 1 − 1 e λ 1 t ⋯ ⋯ ⋯ ⋯ e λ r t t e λ r t ⋯ t n r − 1 e λ r t \begin{matrix}e^{\lambda_1 t}&te^{\lambda_1 t}&\cdots&t^{n_1-1}e^{\lambda_1 t}\\\cdots&\cdots&\cdots&\cdots&\\e^{\lambda_r t}&te^{\lambda_r t}&\cdots&t^{n_r-1}e^{\lambda_r t}&\end{matrix} eλ1teλrtteλ1tteλrttn11eλ1ttnr1eλrt是方程 P ( d ) x = 0 P(d)x=0 P(d)x=0的解

  • 设实系数齐次方程 P ( D ) x = 0 P(D)x=0 P(D)x=0 r r r个互异的实特征根 λ 1 , ⋯   , λ r \lambda_1,\cdots,\lambda_r λ1,,λr l l l对互异的复特征根 α 1 ± i β 1 , ⋯   , α l ± i β l \alpha_1\pm i\beta_1,\cdots,\alpha_l\pm i\beta_l α1±iβ1,,αl±iβl,重数分别为 n 1 , ⋯   , n r n_1,\cdots,n_r n1,,nr m 1 , ⋯   , m l m_1,\cdots,m_l m1,,ml,且满足 ∑ k = 1 r n k + 2 ∑ k = 1 l m k = n \sum^r_{k=1}n_k+2\sum^l_{k=1}m_k=n k=1rnk+2k=1lmk=n,则齐次方程 P ( D ) x = 0 P(D)x=0 P(D)x=0有以下实解并组成基本解组 e λ k t t e λ k t ⋯ t n k − 1 e λ k t k = 1 , 2 , ⋯   , r e α j t c o s β j t t e α j t c o s β j t ⋯ t m j − 1 e α j t c o s β j t j = 1 , 2 , ⋯   , l e α j t s i n β j t t e α j t s i n β j t ⋯ t m j − 1 e α j t s i n β j t j = 1 , 2 , ⋯   , l \begin{matrix}e^{\lambda_kt}&te^{\lambda_kt}&\cdots&t^{n_k-1}e^{\lambda_kt}&k=1,2,\cdots,r\\e^{\alpha_jt}cos\beta_jt&te^{\alpha_jt}cos\beta_jt&\cdots&t^{m_j-1}e^{\alpha_jt}cos\beta_jt&j=1,2,\cdots,l\\e^{\alpha_jt}sin\beta_jt&te^{\alpha_jt}sin\beta_jt&\cdots&t^{m_j-1}e^{\alpha_jt}sin\beta_jt&j=1,2,\cdots,l\end{matrix} eλkteαjtcosβjteαjtsinβjtteλktteαjtcosβjtteαjtsinβjttnk1eλkttmj1eαjtcosβjttmj1eαjtsinβjtk=1,2,,rj=1,2,,lj=1,2,,l

2.微分算子法,比较系数法,拉普拉斯变换法

  • 非齐次方程 P ( D ) x = f ( t ) P(D)x=f(t) P(D)x=f(t)的解可以通过基础解 + + +特解表示,通过将高阶一维方程转化为一阶高维方程只需求得基解矩阵即可根据公式求出通解的一般表示
  • 对于特殊的 f ( t ) f(t) f(t)有其他更简单的方法:微分算子法,比较系数法,拉普拉斯变换拉普拉斯变换法求解常微分方程
  • 关于微分算子( P ( D ) P(D) P(D)是求微分,而 1 P ( D ) \frac{1}{P(D)} P(D)1是求积分, 1 P ( D ) / P − 1 ( D ) \frac{1}{P(D)}/P^{-1}(D) P(D)1/P1(D)也是一种特殊的微分算子):
    • k k k次多项式 f k ( t ) f_k(t) fk(t),如果 1 P ( x ) \frac{1}{P(x)} P(x)1 x = 0 x=0 x=0处解析,且可以展开成 1 P ( x ) = Q k ( x ) + H k ( x ) \frac{1}{P(x)}=Q_k(x)+H_k(x) P(x)1=Qk(x)+Hk(x),其中 Q k ( x ) Q_k(x) Qk(x) k k k次多项式,而 H k ( x ) H_k(x) Hk(x) k + 1 k+1 k+1次以上的所有高次项,则 1 P ( D ) f k ( t ) = Q k ( D ) f k ( t ) \frac{1}{P(D)}f_k(t)=Q_k(D)f_k(t) P(D)1fk(t)=Qk(D)fk(t),即 1 P ( D ) \frac{1}{P(D)} P(D)1中包含了求 k k k次及以下导的部分 Q k ( D ) Q_k(D) Qk(D)和求 k + 1 k+1 k+1及以上次导的部分 H k ( x ) H_k(x) Hk(x),而对于最高次为 k k k f k ( t ) f_k(t) fk(t),求 k + 1 k+1 k+1及以上次导后就会变成 0 0 0而失效
      • 1 1 − D f k ( t ) = ( 1 + D + D 2 + ⋯ + D k ) f k ( t ) \frac{1}{1-D}f_k(t)=(1+D+D^2+\cdots+D^k)f_k(t) 1D1fk(t)=(1+D+D2++Dk)fk(t) 1 1 − x \frac{1}{1-x} 1x1的展开式实际有无数多项 1 + x + x 2 + ⋯ + x n 1+x+x^2+\cdots+x^n 1+x+x2++xn,而只有前 k k k项作用于 f k ( t ) f_k(t) fk(t)之后才会产生非零的式子
    • P ( λ ) ≠ 0 P(\lambda)\ne0 P(λ)=0,那么 1 P ( D ) e λ t = 1 P ( λ ) e λ t \frac{1}{P(D)}e^{\lambda t}=\frac{1}{P(\lambda)}e^{\lambda t} P(D)1eλt=P(λ)1eλt
      • 1 P ( D 2 ) e i a t = 1 P ( − a 2 ) e i a t \frac{1}{P(D^2)}e^{iat}=\frac{1}{P(-a^2)}e^{iat} P(D2)1eiat=P(a2)1eiat,只要把 D D D替换为 λ \lambda λ即可
    • 1 P ( D ) e λ t v ( t ) = e λ t 1 P ( D + λ ) v ( t ) \frac{1}{P(D)}e^{\lambda t}v(t)=e^{\lambda t}\frac{1}{P(D+\lambda)}v(t) P(D)1eλtv(t)=eλtP(D+λ)1v(t)
      • P ( λ ) = 0 P(\lambda)=0 P(λ)=0时, 1 P ( D ) e λ t = 1 P ( D ) e λ t t 0 = e λ t 1 P ( D + λ ) t 0 = e λ t 1 P ( D + λ ) 1 \frac{1}{P(D)}e^{\lambda t}=\frac{1}{P(D)}e^{\lambda t}t^0=e^{\lambda t}\frac{1}{P(D+\lambda)}t^0=e^{\lambda t}\frac{1}{P(D+\lambda)}1 P(D)1eλt=P(D)1eλtt0=eλtP(D+λ)1t0=eλtP(D+λ)11,如果 1 P ( D + λ ) \frac{1}{P(D+\lambda)} P(D+λ)1 D = 0 D=0 D=0处可以展开,那么根据第一个性质, 1 P ( D + λ ) \frac{1}{P(D+\lambda)} P(D+λ)1作用于 1 1 1之后,只有 D D D 0 0 0次的项才有效, 1 P ( D + λ ) \frac{1}{P(D+\lambda)} P(D+λ)1根据泰勒公式在 D = 0 D=0 D=0处展开后,第一项就是 1 P ( λ ) \frac{1}{P(\lambda)} P(λ)1 1 P ( D ) e λ t = e λ t 1 P ( D + λ ) 1 = e λ t 1 P ( λ ) 1 = 1 P ( λ ) e λ t \frac{1}{P(D)}e^{\lambda t}=e^{\lambda t}\frac{1}{P(D+\lambda)}1=e^{\lambda t}\frac{1}{P(\lambda)}1=\frac{1}{P(\lambda)}e^{\lambda t} P(D)1eλt=eλtP(D+λ)11=eλtP(λ)11=P(λ)1eλt
  • 对于 P ( D ) x = f ( t ) P(D)x=f(t) P(D)x=f(t)下面两个类型适合使用比较系数法:
    • f ( t ) = ( b 0 t k + b 1 t k − 1 + ⋯ + b k − 1 t + b k ) e λ 0 t f(t)=(b_0t^k+b_1t^{k-1}+\cdots+b_{k-1}t+b_k)e^{\lambda_0 t} f(t)=(b0tk+b1tk1++bk1t+bk)eλ0t,, λ 0 \lambda_0 λ0 P ( λ ) P(\lambda) P(λ) m m m重特征根( m m m可以是 0 0 0
      • 此时有特解 x ∗ ( t ) = t m ( c 0 t k + c 1 t k − 1 + ⋯ + c k − 1 t + c k ) e λ 0 t x^*(t)=t^m(c_0t^k+c_1t^{k-1}+\cdots+c_{k-1}t+c_k)e^{\lambda_0 t} x(t)=tm(c0tk+c1tk1++ck1t+ck)eλ0t,其中 c 0 , ⋯   , c k c_0,\cdots,c_k c0,,ck是待定的常数,通过比较系数可以确定待定的常数
    • f ( t ) = [ p k ( t ) c o s β t + q k ( t ) s i n β t ] e λ t f(t)=[p_k(t)cos\beta t+q_k(t)sin\beta t]e^{\lambda t} f(t)=[pk(t)cosβt+qk(t)sinβt]eλt α \alpha α β \beta β是实数, p k ( t ) p_k(t) pk(t) q k ( t ) q_k(t) qk(t)都是最高为 k k k次的多项式, α + i β \alpha+i\beta α+iβ P ( λ ) = 0 P(\lambda)=0 P(λ)=0 m m m重特征根( m m m可以是 0 0 0
      • 此时有特解 x ∗ ( t ) = t m ( A k ( t ) c o s β t + B k ( t ) s i n β t ) e α t x^*(t)=t^m(A_k(t)cos\beta t+B_k(t)sin\beta t)e^{\alpha t} x(t)=tm(Ak(t)cosβt+Bk(t)sinβt)eαt,其中 A k ( t ) A_k(t) Ak(t) B k ( t ) B_k(t) Bk(t)都是最高为 k k k次的待定多项式
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_森罗万象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值