【MATLAB】MODWT分解+FFT+HHT组合算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

MODWT分解+FFT+HHT组合算法是一种综合性的信号处理方法,它结合了经验小波变换(Empirical Wavelet Transform,EWT)、快速傅里叶变换(Fast Fourier Transform,FFT)和希尔伯特黄变换(Hilbert-Huang Transform,HHT)的优点,具有较高的计算效率和准确性。

在MODWT分解+FFT+HHT组合算法中,首先使用MODWT对信号进行自适应分解,得到一系列本征模函数(Intrinsic Mode Functions,IMF);然后对每个IMF进行FFT计算其频谱特征;最后使用HHT对每个IMF进行希尔伯特谱分析,得到信号的时频分布和能量特征。

MODWT分解+FFT+HHT组合算法的具体步骤如下:

  1. 对输入信号进行MODWT分解,得到一系列本征模函数(IMF。MODWT是一种自适应的信号分解方法,能够将信号分解为一系列具有不同尺度的IMF,每个IMF都对应着信号中的某个特征尺度。

  2. 对每个IMF进行FFT计算,得到其频谱特征。FFT是一种高效的计算离散傅里叶变换(DFT)的算法,能够快速计算信号的频谱。通过FFT,我们可以得到每个IMF在不同频率下的贡献。

  3. 对每个IMF进行希尔伯特黄变换(HHT),得到其时频分布和能量特征。HHT是一种非线性、非稳定信号的处理方法,能够得到信号的瞬时频率和瞬时幅值。通过HHT,我们可以得到每个IMF在不同时刻的频率和幅值信息。

通过以上步骤,MODWT 分解+FFT+HHT 组合算法能够得到输入信号在不同尺度、不同频率和不同时刻下的特征信息,从而为信号的分析和处理提供了全面的信息。同时,该算法结合了自适应分解、频谱分析和希尔伯特谱分析的优点,具有较高的计算效率和准确性。

除了在信号处理领域的应用,MODWT分解+FFT+HHT组合算法还可以应用于其他领域。例如,在图像处理中,可以将图像看作一个信号,对其执行MODWT分解+FFT+HHT组合算法来得到图像的频谱特征和边缘信息。在语音处理中,可以使用该算法对语音信号进行分析,得到其频谱特征和音调信息。

此外,MODWT分解+FFT+HHT组合算法还可以与其他方法结合使用,以进一步提高处理效果。例如,可以将MODWT分解与小波包变换(Wavelet Packet Transform,WPT)结合使用,得到更精细的信号分解结果;可以将FFT与短时傅里叶变换(Short-Time Fourier Transform,STFT)结合使用,得到信号在不同时间窗下的频谱特征;可以将HHT与经验模态分解(Empirical Mode Decomposition,EMD)结合使用,得到更准确的IMF。

总之,MODWT分解+FFT+HHT组合算法是一种综合性的信号处理方法,具有广泛的应用前景。通过对其深入研究和改进,可以为各个领域的研究和应用提供有力的支持。

2 出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】MODWT分解+FFT+HHT组合算法

CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b或2023b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪(CEEMDAN)、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 1. EMD(经验模态分解,Empirical Mode Decomposition) 2. TVF-EMD(时变滤波的经验模态分解,Time-Varying Filtered Empirical Mode Decomposition) 3. EEMD(集成经验模态分解,Ensemble Empirical Mode Decomposition) 4. VMD(变分模态分解,Variational Mode Decomposition) 5. CEEMDAN(完全自适应噪声集合经验模态分解,Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) 6. LMD(局部均值分解,Local Mean Decomposition) 7. RLMD(鲁棒局部均值分解, Robust Local Mean Decomposition) 8. ITD(固有时间尺度分解,Intrinsic Time Decomposition) 9. SVMD(逐次变分模态分解,Sequential Variational Mode Decomposition) 10. ICEEMDAN(改进的完全自适应噪声集合经验模态分解,Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) 11. FMD(特征模式分解,Feature Mode Decomposition) 12. REMD(鲁棒经验模态分解,Robust Empirical Mode Decomposition) 13. SGMD(辛几何模态分解,Spectral-Grouping-based Mode Decomposition) 14. RLMD(鲁棒局部均值分解,Robust Intrinsic Time Decomposition) 15. ESMD(极点对称模态分解, extreme-point symmetric mode decomposition) 16. CEEMD(互补集合经验模态分解,Complementary Ensemble Empirical Mode Decomposition) 17. SSA(奇异谱分析,Singular Spectrum Analysis) 18. SWD(群分解,Swarm Decomposition) 19. RPSEMD(再生相移正弦辅助经验模态分解,Regenerated Phase-shifted Sinusoids assisted Empirical Mode Decomposition) 20. EWT(经验小波变换,Empirical Wavelet Transform) 21. DWT(离散小波变换,Discraete wavelet transform) 22. TDD(时域分解,Time Domain Decomposition) 23. MODWT(最大重叠离散小波变换,Maximal Overlap Discrete Wavelet Transform) 24. MEMD(多元经验模态分解,Multivariate Empirical Mode Decomposition) 25. MVMD(多元变分模态分解,Multivariate Variational Mode Decomposition)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lwcah(全网各平台账号同名)

您的鼓励是我创作的最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值