MIT 线性代数 Linear Algebra 7: Ax=0 齐次线性方程组的解

在上一节的末尾,我们提到了齐次线性方程组的解,这一节中,Prof. Strang详细探讨了计算齐次线性方程组解的算法。先总结一下主要结论:

Input: A \bm{A} A
Output: x \bm{x} x, s.t., A x = 0 \bm{Ax=0} Ax=0.

  1. start from A x = 0 \bm{Ax=0} Ax=0
  2. compute the echelon form U x = 0 \bm{Ux=0} Ux=0
  3. compute the reduced echelon form R x = 0 \bm{Rx=0} Rx=0
  4. write down the special solution and hence the solution space.

其中,第二步是把 A x = 0 \bm{Ax=0} Ax=0化成行阶梯型,第三步是把 A x = 0 \bm{Ax=0} Ax=0化成行最简形,根据行最简形我们可以直接写出 x \bm{x} x 的特解(也就是 A x = 0 \bm{Ax=0} Ax=0 null space的bases)和通解。

好,下面我们从例子入手,看看这些步骤是怎么来的。

Start from A x = 0 \bm{Ax=0} Ax=0

考虑
[ 1 2 2 2 2 4 6 8 3 6 8 10 ] [ x 1 x 2 x 3 x 4 ] = [ 0 0 0 ] \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \\ \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} 1232462682810x1x2x3x4=000

A \bm{A} A 的 null space N ( A ) N(\bm{A}) N(A),也就是 x \bm{x} x 的取值.

由上一节的内容我们知道, N ( A ) N(\bm{A}) N(A)所在空间的维度是 R 4 \mathbb{R}^4 R4, N ( A ) N(\bm{A}) N(A)这个subspace的维度是矩阵 A \bm{A} A的列数减去 A \bm{A} A中最大线性无关的列的个数, i.e., 列数减 A \bm{A} A 的秩: n − rank A n-\text{rank}\bm{A} nrankA. 不过,这一节我们要按照算法步骤往下走。

Echelon form U x = 0 \bm{Ux=0} Ux=0

第二步是把 A \bm{A} A 化为行阶梯形 ,我们直接给出答案
[ 1 2 2 2 0 0 2 4 0 0 0 0 ] [ x 1 x 2 x 3 x 4 ] = [ 0 0 0 ] \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} 100200220240x1x2x3x4=000

注意

  1. (null space) 在进行初等行变换的时候,null space并没有改变,其主要原因是等式右边是全零矩阵。 U x = 0 \bm{Ux=0} Ux=0 的解全部都是 A x = 0 \bm{Ax=0} Ax=0 的解, vice versa.
  2. (column space) column space 确实是改变了 (初等行变换不会改变column space)。
  3. (rank) 对于矩阵 U \bm{U} U, 它总共有两个pivot (每一行第一个不为0的element)。因此我们称这个矩阵的秩 rank  U = 2 \text{rank}~\bm{U}=2 rank U=2, 也就是说,矩阵的秩等于矩阵行阶梯形中pivot的个数。
  4. (pivot row/column and free row/column) 我们把 pivot 所在的行和列分别叫做 pivot row 和 pivot column,把其他列叫做 free row 和 free column。

在这一步,Prof. Strang直接给出结论:所有free column对应的 x i x_i xi 可以随便取值。

因为这里有两个free columns, 所以 x 2 x_2 x2 x 4 x_4 x4 可以随便取值。 那我们直接取
[ x 2 x 4 ] = c [ 1 0 ] + d [ 0 1 ] \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = c \begin{bmatrix} 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \end{bmatrix} [x2x4]=c[10]+d[01]

带入 U x = 0 \bm{Ux=0} Ux=0, 可以得出解空间
[ x 1 x 2 x 3 x 4 ] = c [ − 2 1 0 0 ] + d [ 2 0 − 2 1 ] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \end{bmatrix} = c \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + d \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix} x1x2x3x4=c2100+d2021

实际上,我们是取了两个 special solution (特解) 来表示整个解空间的。而特解的个数就是由 A \bm{A} A 或者说 U \bm{U} U 中 free column 的个数。

至此,我们已经得到了 A x = 0 \bm{Ax=0} Ax=0 的解空间,下面我们要研究的是,如果从行最简形直接写出所有特解,i.e., the bases of the null space.

Redued echelon form R x = 0 \bm{Rx=0} Rx=0

好,我们继续把行阶梯型化为行最简形,given
[ 1 2 0 − 2 0 0 1 2 0 0 0 0 ] [ x 1 x 2 x 3 x 4 ] = [ 0 0 0 ] \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} 100200010220x1x2x3x4=000

其实行最简形就是把 pivot row 和 pivot column的 intersection 变成 单位阵。我们可以把2, 3列互换一下,given
[ 1 0 2 − 2 0 1 0 2 0 0 0 0 ] [ x 1 x 3 x 2 x 4 ] = [ 0 0 0 ] \begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}\begin{bmatrix} x_1 \\ x_3 \\ x_2 \\ x_4 \\ \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} 100010200220x1x3x2x4=000

实际上这就变成了一个分块矩阵相乘
[ I F 0 0 ] [ X 1 X 2 ] = [ 0 0 ] \begin{bmatrix} \bm{I} & \bm{F} \\ 0 & 0\\ \end{bmatrix}\begin{bmatrix} \bm{X_1} \\ \bm{X_2} \\ \end{bmatrix}=\begin{bmatrix} \bm{0} \\ \bm{0} \\ \end{bmatrix} [I0F0][X1X2]=[00]

则有 I X 1 + F X 2 = 0 \bm{I}\bm{X_1} + \bm{F}\bm{X_2} = 0 IX1+FX2=0, 其中 X 1 \bm{X_1} X1 对应的是 pivot columns, X 2 \bm{X_2} X2 对应的是 free columns.

现在我们要选一组特解应该怎么选尼?按照之前的选法,我们可以把 X 2 \bm{X_2} X2 选为单位阵,这时就有 I X 1 + F I = 0 \bm{I}\bm{X_1} + \bm{F}\bm{I} = 0 IX1+FI=0, 所以实际上 X 1 = − F \bm{X_1} = -\bm{F} X1=F.

换句话说,当我们得到行最简形 R x = 0 \bm{Rx=0} Rx=0 时,一组特解是可以写为
[ x 1 x 3 x 2 x 4 ] = [ − F I ] \begin{bmatrix} x_1 \\ x_3 \\ x_2 \\ x_4 \\ \end{bmatrix}= \begin{bmatrix} -\bm{F} \\ \bm{I} \\ \end{bmatrix} x1x3x2x4=[FI]

再换行,写成通解的形式即可。

有兴趣的同学可以再试一个例子
A = [ 1 2 3 2 4 6 2 6 8 2 8 10 ] \bm{A}=\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \\ \end{bmatrix} A=1222246836810

它的行最简形是(这里进行了row exchange,相当于方程易位,所有初等行变换都不改变null space)
R = [ 1 0 1 0 1 1 0 0 0 0 0 0 ] \bm{R}=\begin{bmatrix} 1 & 0& 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} R=100001001100

先确定null space所在空间是 R 3 \mathbb{R}^3 R3, null space的维度是1(只有一个free column),直接写出一组特解
[ − 1 − 1 1 ] \begin{bmatrix} -1 \\ -1 \\ 1 \\ \end{bmatrix} 111

则通解为
x = c [ − 1 − 1 1 ] \bm{x}=c\begin{bmatrix} -1 \\ -1 \\ 1 \\ \end{bmatrix} x=c111

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值