MIT 线性代数 Linear Algebra 15: 投影 projection

这一讲主要是在说,一个 R m \mathbb{R}^m Rm 维空间中的点 (也就是一个 vector) 怎么样被投影到 R m \mathbb{R}^m Rm 的一个 subspace 上的。

Motivation: 对于方程 A x = b \bm{Ax=b} Ax=b,我们之前已经知道它有解的充要条件是 b \bm{b} b A \bm{A} A 的 column space C ( A ) C(\bm{A}) C(A) 中。那么,如果 b \bm{b} b 不在 C ( A ) C(\bm{A}) C(A) 中怎么办尼 (比如我们不停地对卫星的位置进行观测得到一系列的位置方程,但每个方程都有noise)?此时 exact solution 不存在,我们可以尝试求一个近似的最优解。即,把 b \bm{b} b 投影到 C ( A ) C(\bm{A}) C(A) 上,再求出 x ^ \hat{\bm{x}} x^ 使得 A x ^ = P b \bm{A\hat{x}=Pb} Ax^=Pb, 其中 P \bm{P} P 是一个投影矩阵 (一个vector转换到另一个vector)。

A ⊤ A \bm{A^\top A} AA

在进入正题之前,我们先看一下矩阵 A ⊤ A \bm{A^\top A} AA。结论: A m × n \bm{A}_{m\times n} Am×n 是一个列满秩矩阵, 那么 A ⊤ A \bm{A^\top A} AA ( n × n n\times n n×n) 满秩

Proof. 令 A ⊤ A x = 0 \bm{A^\top A x=0} AAx=0, 我们只要证明 x = 0 \bm{x=0} x=0 即可证明 A ⊤ A \bm{A^\top A} AA 满秩。

A ⊤ A x = 0 \bm{A^\top A x=0} AAx=0, 我们有 x ⊤ A ⊤ A x = 0 \bm{x^\top A^\top A x}=0 xAAx=0,则
x ⊤ A ⊤ A x = ( A x ) ⊤ A x = 0 \bm{x^\top A^\top A x}= (\bm{A x})^\top \bm{A x}=0 x

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值