实对称矩阵的特征值求法_梳理:矩阵对角化

设A、B为n阶方阵,μ为A的特征值。

相关结论

1.矩阵A的所有特征值的和等于A的迹(A的主对角线元素之和)。

2.矩阵A的所有特征值的积等于A的行列式。

3.关于A的矩阵多项式f(A)的特征值为f(μ)。

4.若A可逆,则A−1的特征值为1/μ。

5.若A与B相似,则A与B有相同特征多项式,即A与B特征值相同。

6.属于A的不同特征值的特征向量线性无关。

7.(哈密尔顿定理)若φ(μ)为A的特征多项式,则φ(A)=0。

8.A能对角化的充分必要条件是A有n个线性无关的特征向量。

9.若A的n个特征值互不相同,则A可对角化。

10.若A的k重特征值μ有k个线性无关的特征向量,则A可对角化。

11.若A有k重特征值μ,齐次方程(A−μE)X=0解空间维数为k,则A可对角化。

12.若A有k重特征值,矩阵A−μE的秩为n−k,则A可对角化。

13.若A是对称矩阵,则属于A的不同特征值的特征向量正交。

14.若A是对称矩阵,则A必可对角化。

矩阵A对角化的步骤

1.求可逆矩阵P,使得

P^−1AP=diag(μ12,⋯,μn)

①求A的特征值μ12,⋯,μn

②求上述特征值对应的特征向量p1,p2,⋯,pn

③写出矩阵P=(p1,p2,⋯,pn)。

2.若A对称,求正交矩阵Q,使得

Q^−1AQ=Q^TAQ=diag(μ12,⋯,μn)

①求A的特征值μ12,⋯,μn

②求上述特征值对应的特征向量p1,p2,⋯,pn

③将k重特征值μi的k个特征向量施密特正交化;

④将所有n个特征向量单位化;

⑤不妨设经过正交化单位化的特征向量依次为q1,q2,⋯,qn,写出正交矩阵Q=(q1,q2,⋯,qn)。

典型例子

8632947afd37260651408175744e6487.png
df60c7cff9397e6c697e75c5420902ab.png
f4d3a95c93b7071f082e750259fe124a.png
097bdbd54556897e1daf96b8a1d31b4d.png
71271a4519a6232c53baaaedf96a10f3.png
  • 0
    点赞
  • 0
    评论
  • 4
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值