对称矩阵、复矩阵、傅里叶变换、正定矩阵

矩阵的特殊性也表现在eigenvalue和eigenvector上

马尔科夫矩阵,有一特征值为1

开始MIT线性代数课的最后一大部分,关于正定矩阵,对称,奇异值分解。这些都是线性代数的应用或者升华。明显比前两大块要抽象,也更加贴近应用。
 

对称矩阵中的极品:正定矩阵(所有特征值都 > 0)更是好东西,在现实应用中经常出现。

对称矩阵、

对称矩阵可是好东西,性质真是各种好:eigenvalue都是实数、eigenvector互相垂直

e.g.单位矩阵:eigenvalue都是1 ;每个向量都是eigenvector

如果特征值互不相同,那么每个特征值的特征向量是在一条线上,那些线是垂直的,

如果特征值重复,那就有一整个平面的特征向量,

如果一个向量有n个线性无关的特征向量,那么有 A=S \Lambda S^{-1} 

如果A还是对称矩阵,那么有 A=Q \Lambda Q^{-1}=Q \Lambda Q^{T} 。

对称矩阵的分解形式,这个分解完全展现了特征值、特征向量、对称性等所有性质,

这些特征值叫做(spectrum 就是矩阵的特征值集合)。光谱理论,as a combination of pure things,;   力学上,主轴定理principle axis theorem,几何上来看,如果给定某种实体,在合适的轴上来看,各方向之间不相互耦合。

why real eigenvalues?

λ 是一个数,不是矩阵

\overline{a+ib} =a-ib

Ax=λx  ---A是实矩阵,always-->   A\bar{x} =\bar{\lambda} \bar{x}   ==>  \bar{x}^{T}A ^{T}=\bar{x}^{T}\bar{\lambda}   ---对称--->   \bar{x}^{T}A =\bar{x}^{T}\bar{\lambda}

取内积:

\bar{x}^{T}A x =\lambda \bar{x}^{T}x                                                                                                   \bar{x}^{T}A x =\bar{x}^{T}\bar{\lambda}x

\lambda =\bar{\lambda}      λ  is real!     if  

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值