矩阵的特殊性也表现在eigenvalue和eigenvector上
马尔科夫矩阵,有一特征值为1
开始MIT线性代数课的最后一大部分,关于正定矩阵,对称,奇异值分解。这些都是线性代数的应用或者升华。明显比前两大块要抽象,也更加贴近应用。
对称矩阵中的极品:正定矩阵(所有特征值都 > 0)更是好东西,在现实应用中经常出现。
对称矩阵、
对称矩阵可是好东西,性质真是各种好:eigenvalue都是实数、eigenvector互相垂直
e.g.单位矩阵:eigenvalue都是1 ;每个向量都是eigenvector
如果特征值互不相同,那么每个特征值的特征向量是在一条线上,那些线是垂直的,
如果特征值重复,那就有一整个平面的特征向量,
如果一个向量有n个线性无关的特征向量,那么有
如果A还是对称矩阵,那么有 。
对称矩阵的分解形式,这个分解完全展现了特征值、特征向量、对称性等所有性质,
这些特征值叫做谱(spectrum 就是矩阵的特征值集合)。光谱理论,as a combination of pure things,; 力学上,主轴定理principle axis theorem,几何上来看,如果给定某种实体,在合适的轴上来看,各方向之间不相互耦合。
why real eigenvalues?
λ 是一个数,不是矩阵
Ax=λx ---A是实矩阵,always--> ==>
---对称--->
取内积:
λ is real! if
≠0
如果一个数