一 、学习思路一览
二、对Numpy的认识
Numpy是Python众多库中的一个功能强大,主要用于对多维数组执行计算的一个库,拥有大量的库函数,简化了使用者的操作,使得代码简洁有序。
三、数据的维度
维度:一组数据的组织形式。一个数据对应一种含义;多个数据则对应一种或多种含义;而一种含义对应一种维度,因此对于一组数据可能是一维或多维。而数据的维度则是在数据之间形成特定关系,表达多种数据含义的基础概念。
常见的数据的维度有一维,二维,在我们的认知以上还有三维,多维、高维等。
(一)一维数据:由对等关系的有序或无序数据组成,采用线性方程组织。例如下列一组数据:
1.231、1.232、1.230、1.234,在一个方向上,均代表1.23的近似值这一含义,则该组数便是一维数据。
一维数据的表示形式也多种多样。既可以是python自身提供的列表,集合,也可以是数组。在此提一下用数组表示和用列表表示的异同。
同 | 异 | |
列表 | 是一组数据的有序结构 | 元素的数据类型不一定相同 |
数组 | 是一组数据的有序结构 | 元素的数据类型一定相同 |
例如以下两组数据:(1)3.15、3.17、6.21、7.1、5.58
(2)3.14、[3.14,3.78]、‘pi’
第(1)可列表可数组,但是第(2)必须用列表
(二)二维数据:由多个一维数据构成,是一维数据的组合形式;表格是典型的二维数组,表头是二维数据的一部分。
(三)多维数据:由一维或二维数据在新维度上扩展形成。
四、N维数组对象:ndarray
ndarray是一个多位数组对象,由两部分构成:实际的数据、描述这些数据的元数据(数据维度,数据类型等)。ndarray数组一般要求所有元素类型相同,数组下标从0开始。
五、ndarray数组的属性、创建和类型转换
(一)属性(由以下具体代码以及运行结果来说明):
下面对上述代码进行解读,来进一步来理解Numpy库的调用和ndarray数组的属性:
首先,需要下载安装numpy库,然后import调用numpy库并另命名为np。以np.array创建数组a,如此,我们便得到了一个自命名数组。在该数组中,我们来探究ndarray数组的属性。
由此便可以得出任一数组的基本属性。
(二)创建
(1)从Python的列表、元组等类型创建ndarray数组,如下:
(2)使用Numpy中函数创建ndarray数组,常见函数如下:
(3)使用Numpy中其他函数创建:
(三)类型转换
对于创建后的数组,可对其进行唯独变换和元素类型变换。
(1)维度变换:
(2)类型变换:
new_a=a.astype(new_type)
改变前:
改变后(改变为浮点数类型):
六、数组的索引和切片
顾名思义,索引:获取数组中特定位置元素的过程
切片:获取数组元素子集的过程
例如一维数组都索引和切片:
1:4:2分别对应起始,终止,步长。
七、数组的函数运算
(一)数组与标量之间开展运算:
该运算等价于数组中的每个元素均与该标量进行运算
(二)对数组中的数据执行元素级运算的函数
(三)Numpy一元函数
(四)Numpy二元函数