Python数据分析--第一周:Numpy库的入门

本文介绍了Numpy库在Python中的作用,特别是其用于处理多维数组的功能。Numpy提供了一维、二维到多维数据的结构——ndarray,强调了数组的属性、创建方法和类型转换。此外,文章还讨论了数组的索引、切片以及各种数学运算,包括标量运算、元素级运算和Numpy内置的函数应用。
摘要由CSDN通过智能技术生成

一 、学习思路一览

 

二、对Numpy的认识

        Numpy是Python众多库中的一个功能强大,主要用于对多维数组执行计算的一个库,拥有大量的库函数,简化了使用者的操作,使得代码简洁有序。

三、数据的维度

        维度:一组数据的组织形式。一个数据对应一种含义;多个数据则对应一种或多种含义;而一种含义对应一种维度,因此对于一组数据可能是一维或多维。而数据的维度则是在数据之间形成特定关系,表达多种数据含义的基础概念。

        常见的数据的维度有一维,二维,在我们的认知以上还有三维,多维、高维等。

(一)一维数据:由对等关系的有序或无序数据组成,采用线性方程组织。例如下列一组数据:

1.231、1.232、1.230、1.234,在一个方向上,均代表1.23的近似值这一含义,则该组数便是一维数据

         一维数据的表示形式也多种多样。既可以是python自身提供的列表,集合,也可以是数组。在此提一下用数组表示和用列表表示的异同。

列表是一组数据的有序结构元素的数据类型不一定相同
数组是一组数据的有序结构元素的数据类型一定相同

例如以下两组数据:(1)3.15、3.17、6.21、7.1、5.58

                                 (2)3.14、[3.14,3.78]、‘pi’

第(1)可列表可数组,但是第(2)必须用列表

(二)二维数据:由多个一维数据构成,是一维数据的组合形式;表格是典型的二维数组,表头是二维数据的一部分。

(三)多维数据:由一维或二维数据在新维度上扩展形成。

四、N维数组对象:ndarray

ndarray是一个多位数组对象,由两部分构成:实际的数据、描述这些数据的元数据(数据维度,数据类型等)。ndarray数组一般要求所有元素类型相同,数组下标从0开始。

五、ndarray数组的属性、创建和类型转换

        (一)属性(由以下具体代码以及运行结果来说明):

 

 下面对上述代码进行解读,来进一步来理解Numpy库的调用和ndarray数组的属性:

        首先,需要下载安装numpy库,然后import调用numpy库并另命名为np。以np.array创建数组a,如此,我们便得到了一个自命名数组。在该数组中,我们来探究ndarray数组的属性。

由此便可以得出任一数组的基本属性。

(二)创建

 (1)从Python的列表、元组等类型创建ndarray数组,如下:

 

         (2)使用Numpy中函数创建ndarray数组,常见函数如下:

        (3)使用Numpy中其他函数创建:

 

(三)类型转换

对于创建后的数组,可对其进行唯独变换和元素类型变换。

(1)维度变换:

 

(2)类型变换:

new_a=a.astype(new_type) 

改变前:

 

 改变后(改变为浮点数类型):

 

六、数组的索引和切片

        顾名思义,索引:获取数组中特定位置元素的过程

                          切片:获取数组元素子集的过程

例如一维数组都索引和切片:

 

 1:4:2分别对应起始,终止,步长。

 

 七、数组的函数运算

(一)数组与标量之间开展运算:

该运算等价于数组中的每个元素均与该标量进行运算

 

(二)对数组中的数据执行元素级运算的函数 

(三)Numpy一元函数

 

(四)Numpy二元函数

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白开发员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值