目标检测模型中的性能评价方式

一、交并比IOU

    物体检测需要定位出物体的bounding box,就像下面的图片一样,我们不仅要定位出车辆的bounding box 我们还要识别出bounding box 里面的物体就是车辆。对于bounding box的定位精度,有一个很重要的概念,因为我们算法不可能百分百跟人工标注的数据完全匹配,因此就存在一个定位精度评价公式:IOU。

                                       

    IOU定义了两个bounding box的重叠度,如下图所示:

                                        

    矩形框A、B的一个重合度IOU计算公式为:就是矩形框A、B的重叠面积占A、B并集的面积比例:
                                                                IOU=(A∩B)/(A∪B)

二、精确率(precision)和召回率(recall)

首先介绍一个模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive)分别是:

    True positives(TP) :实际为正例且被分类器划分为正例的样本数。
    False positives(FP):实际为负例但被分类器划分为正例的样本数。
    False negatives(FN):实际为正例但被分类器划分为负例的样本数。
    True-negatives(TN): 实际为负例且被分类器划分为负例的样本数。

具体描述如下:

    注意:一般来说,precision 和 recall是鱼与熊掌的关系,往往召回率越高,准确率越低

三、P-R(precision-recall)曲线

      

P-R曲线即 以 precision 和 recall 作为 纵、横轴坐标 的二维曲线。通过选取不同阈值时对应的精度和召回率画出。

    注意:总体趋势,精度越高,召回越低,当召回达到1时,对应概率分数最低的正样本,这个时候正样本数量除以所有大于等于该阈值的样本数量就是最低的精度值。另外,P-R曲线围起来的面积就是AP值,通常来说一个越好的分类器,AP值越高

    最后小小总结一下,在目标检测中,每一类都可以根据 recall 和 precision绘制P-R曲线,AP就是该曲线下的面积,mAP就是所有类AP的平均值。

四、mAP(mean average precision)

目标检测模型中性能评估的几个重要参数有精确度和召回率。下面将讨论一个常用的度量指标:**均值平均精确率,mAP:不同类别下的平均精确率!,结合PR曲线。

平均精确率

    AP(Average Precision)即是 :不同召回率下的平均。可以通过计算PR曲线的面积。
    mAP 即 Mean Average Precision即平均AP值,是对多个验证集个体求平均AP值,作为 object detection中衡量检测精度的指标。

    总结:目标检测中衡量识别精度的指标是mAP(mean average precision)。多个类别物体检测中,每一个类别都可以根据recall和precision绘制一条曲线,AP就是该曲线下的面积,mAP是多个类别AP的平均值

五、检测速率Fps(frame per second)

    1秒内识别的图像数(帧数)

本文参考作者:

    https://blog.csdn.net/qq_29893385/article/details/81213377
    https://blog.csdn.net/zl3090/article/details/82740727
    https://blog.csdn.net/abc13526222160/article/details/89303380  
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值