基于U-net的自然图像分割识别

data.py 用于数据处理

import os

from torch.utils.data import Dataset
from utils import *
from torchvision import transforms
transform=transforms.Compose([
    transforms.ToTensor()
])

class MyDataset(Dataset):
    def __init__(self,path):
        self.path=path
        self.name=os.listdir(os.path.join(path,'SegmentationClass1'))

    def __len__(self):
        return len(self.name)

    def __getitem__(self, index):
        segment_name=self.name[index]  #xx.png
        segment_path=os.path.join(self.path,'SegmentationClass1',segment_name)
        image_path=os.path.join(self.path,'JPEGImages1',segment_name.replace('png','jpg'))
        segment_image=keep_image_size_open(segment_path)
        image=keep_image_size_open(image_path)
        return transform(image),transform(segment_image)

if __name__ == '__main__':
    data=MyDataset('C:\code\pythonProject1\datasets')
    print(data[0][0].shape)
    print(data[0][1].shape)

net.py   unet网络模型

import torch
from torch import nn
from torch.nn import functional as F

class Conv_Block(nn.Module):
    def __init__(self,in_channel,out_channel):
        super(Conv_Block, self).__init__()
        self.layer=nn.Sequential(
            nn.Conv2d(in_channel,out_channel,3,1,1,padding_mode='reflect',bias=False),
            nn.BatchNorm2d(out_channel),
            nn.Dropout2d(0.3),
            nn.LeakyReLU(),
            nn.Conv2d(out_channel, out_channel, 3, 1, 1, padding_mode='reflect', bias=False),
            nn.BatchNorm2d(out_channel),
            nn.Dropout2d(0.3),
            nn.LeakyReLU()
        )
    def forward(self,x):
        return self.layer(x)


class DownSample(nn.Module):
    def __init__(self,channel):
        super(DownSample, self).__init__()
        self.layer=nn.Sequential(
            nn.Conv2d(channel,channel,3,2,1,padding_mode='reflect',bias=False),
            nn.BatchNorm2d(channel),
            nn.LeakyReLU()
        )
    def forward(self,x):
        return self.layer(x)


class UpSample(nn.Module):
    def __init__(self,channel):
        super(UpSample, self).__init__()
        self.layer=nn.Conv2d(channel,channel//2,1,1)
    def forward(self,x,feature_map):
        up=F.interpolate(x,scale_factor=2,mode='nearest')
        out=self.layer(up)
        return torch.cat((out,feature_map),dim=1)


class UNet(nn.Module):
    def __init__(self):
        super(UNet, self).__init__()
        self.c1=Conv_Block(3,64)
        self.d1=DownSample(64)
        self.c2=Conv_Block(64,128)
        self.d2=DownSample(128)
        self.c3=Conv_Block(128,256)
        self.d3=DownSample(256)
        self.c4=Conv_Block(256,512)
        self.d4=DownSample(512)
        self.c5=Conv_Block(512,1024)
        self.u1=UpSample(1024)
        self.c6=Conv_Block(1024,512)
        self.u2 = UpSample(512)
        self.c7 = Conv_Block(512, 256)
        self.u3 = UpSample(256)
        self.c8 = Conv_Block(256, 128)
        self.u4 = UpSample(128)
        self.c9 = Conv_Block(128, 64)
        self.out=nn.Conv2d(64,3,3,1,1)
        self.Th=nn.Sigmoid()

    def forward(self,x):
        R1=self.c1(x)
        R2=self.c2(self.d1(R1))
        R3 = self.c3(self.d2(R2))
        R4 = self.c4(self.d3(R3))
        R5 = self.c5(self.d4(R4))
        O1=self.c6(self.u1(R5,R4))
        O2 = self.c7(self.u2(O1, R3))
        O3 = self.c8(self.u3(O2, R2))
        O4 = self.c9(self.u4(O3, R1))

        return self.Th(self.out(O4))

if __name__ == '__main__':
    x=torch.randn(2,3,256,256)
    net=UNet()
    print(net(x).shape)

train.py   训练

import os

from torch import nn,optim
import torch
from torch.utils.data import DataLoader
from data import *
from net import *
from torchvision.utils import save_image

device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#print(device)
weight_path='params/unet.pth'
data_path=r'datasets'
save_path='train_image'
if __name__ == '__main__':
    data_loader=DataLoader(MyDataset(data_path),batch_size=2,shuffle=True)
    net=UNet().to(device)
    if os.path.exists(weight_path):
        net.load_state_dict(torch.load(weight_path))
        print('successful load weight!')
    else:
        print('not successful load weight')

    opt=optim.Adam(net.parameters())
    loss_fun=nn.BCELoss()

    epoch=1
    while True:
        for i,(image,segment_image) in enumerate(data_loader):
            image, segment_image=image.to(device),segment_image.to(device)

            out_image=net(image)
            train_loss=loss_fun(out_image,segment_image)

            opt.zero_grad()
            train_loss.backward()
            opt.step()

            if i%5==0:
                print(f'{epoch}-{i}-train_loss===>>{train_loss.item()}')

            if i%50==0:
                torch.save(net.state_dict(),weight_path)

            _image=image[0]
            _segment_image=segment_image[0]
            _out_image=out_image[0]

            img=torch.stack([_image,_segment_image,_out_image],dim=0)
            save_image(img,f'{save_path}/{i}.png')

        epoch+=1
        if epoch==100 : break

test.py   测试

import os

import torch

from net import *
from utils import keep_image_size_open
from data import *
from torchvision.utils import save_image

net=UNet().cuda()

weights='params/unet.pth'
if os.path.exists(weights):
    net.load_state_dict(torch.load(weights))
    print('successfully')
else:
    print('no loading')

_input=input('please input JPEGImages path:')

img=keep_image_size_open(_input)
img_data=transform(img).cuda()
print(img_data.shape)
img_data=torch.unsqueeze(img_data,dim=0)
out=net(img_data)
save_image(out,'result/result.jpg')

utils.py

from PIL import Image


def keep_image_size_open(path, size=(256, 256)):
    img = Image.open(path)
    temp = max(img.size)
    mask = Image.new('RGB', (temp, temp), (0, 0, 0))
    mask.paste(img, (0, 0))
    mask = mask.resize(size)
    return mask

checkCuda.py   检测自己的cuda版本

import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.version())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值