动手学深度学习v2-李沐 softmax回归

网络架构

我们有4个特征和3个可能的输出类别, 我们将需要12个标量来表示权重(带下标的w), 3个标量来表示偏置(带下标的b)。 下面我们为每个输入计算三个未规范化的预测(logit):o1、o2和o3。

与线性回归一样,softmax回归也是一个单层神经网络。

但是我又不能将未规范化的预测o直接视为输出。一方面,我们没有限制这些输出数字的总和为1。 另一方面,根据输入的不同,它们可以为负值。

要将输出视为概率,我们必须保证在任何数据上的输出都是非负的且总和为1。 此外,我们需要一个训练的目标函数,来激励模型精准地估计概率。

softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持 可导的性质。

softmax回归的矢量计算表达式为:

损失函数

我们需要一个损失函数来度量预测的效果。 我们将使用最大似然估计,这与在线性回归中的方法相同。

对数似然

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值