驾驶员风格自适应巡航算法设计:Prescan和Simulink联合仿真,涉及上层跟车策略,期望跟随加速度。基于聚类拟合的加速度控制算法与下层逆动力学模型

基于驾驶员风格的自适应巡航算法设计,Prescan和Simulink联合仿真,涉及到上层跟车策略,期望跟着加速度,基于聚类拟和的加速度的控制算法,下层逆动力学模型。
智能驾驶

ID:54199673053391440

智驾小崔


智能驾驶是当今科技发展的一个热门领域,它结合了人工智能、计算机视觉、机器学习等技术,致力于实现车辆的自动驾驶。作为智能驾驶的核心功能之一,自适应巡航控制使得车辆能够在高速公路上根据前车的行驶速度自动调整巡航速度,以保持与其保持合理的车距。在这一领域的研究中,驾驶员风格的考虑是十分关键的。

驾驶员不同的驾驶风格对自适应巡航的设计产生了一定的影响。一方面,某些驾驶员喜欢保持较大的车距,以充分预留反应时间和较大的安全空间;而另一些驾驶员则更倾向于保持较小的车距,以提高行驶效率。为了满足不同驾驶风格的需求,我们需要设计一种基于驾驶员风格的自适应巡航算法。

尽管先进的驾驶员辅助系统(ADAS)已在汽车行业广泛采用,以提高驾驶安全性和舒适性并减轻驾驶员的驾驶负担,但它们通常不会反映不同驾驶员的驾驶风格或个性化定制。 这对于舒适和愉快的驾驶体验以及提高市场接受度可能很重要。 但是,由于驾驶员数量众多且差异很大,要理解并进一步确定驾驶员的驾驶方式具有挑战性。 先前的研究主要在对驾驶员的驾驶行为进行建模时采用了物理方法,但是,即使不是不可能,在捕获人类驾驶员的驾驶特性方面也常常受到很大的限制。 本文提出了一种基于强化学习的方法,该方法通过驾驶员与周围环境的互动学习过程来制定驾驶风格。 根据强化学习理论,可以将驾驶行为视为最大化奖励功能。 代替校准未知奖励函数以满足驾驶员期望响应,我们尝试利用最大似然向强化学习(MLIRL)从人类驾驶数据中恢复它。 本文还提出了一种基于IRL的纵向驾驶辅助系统。 首先,从测试车辆收集大量的现实世界驾驶数据,并将数据分为两组分别用于训练和测试目的。 然后,将纵向加速度建模为人类驾驶活动中的玻耳兹曼分布。 奖励函数表示为一些核化基函数的线性组合。 基于训练集,使用MLIRL估算驾驶风格参数向量。 最后,开发了基于学习的纵向驾驶辅助算法,并在测试集上进行了评估。 结果表明,该方法能够较好地反映驾驶员的驾驶行为。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值