基于 MATLAB 的实战训练:长短期记忆网络(LSTM)模型来进行序列预测任务

目录

步骤概述

详细步骤

1. 加载数据集

2. 数据预处理

3. 定义网络结构

4. 设置训练选项

5. 训练模型

6. 测试模型

完整代码

数据集准备

运行代码

结果解释


基于 MATLAB 的大模型实例,我们将使用一个复杂的长短期记忆网络(LSTM)模型来进行序列预测任务。这个模型将用于预测股票价格的时间序列数据。

步骤概述

  1. 加载数据集
  2. 数据预处理
  3. 定义网络结构
  4. 设置训练选项
  5. 训练模型
  6. 测试模型

详细步骤

1. 加载数据集

我们将使用一个包含股票价格的时间序列数据集。假设数据集存储在一个 CSV 文件中,名为 stock_prices.csv

 

Matlab

深色版本

% 加载数据集
data = readtable('stock_prices.csv');
prices = data.Price;
dates = data.Date;
2. 数据预处理

对数据进行预处理,包括划分训练集和测试集、标准化数据等。

 

Matlab

深色版本

% 划分训练集和测试集
numTimeStepsTrain = floor(0.9 * height(data));
dataTrain = prices(1:numTimeStepsTrain);
dataTest = prices(numTimeStepsTrain+1:end);

% 标准化数据
mu = mean(dataTrain);
sigma = std(dataTrain);
dataTrainStandardized = (dataTrain - mu) / sigma;
dataTestStandardized = (dataTest - mu) / sigma;

% 创建序列数据
sequenceLength = 20;
XTrain = [];
YTrain = [];
for i = 1:(numTimeStepsTrain - sequenceLength)
    XTrain = cat(3, XTrain, dataTrainStandardized(i:i+sequenceLength-1)');
    YTrain = cat(1, YTrain, dataTrainStandardized(i+sequenceLength));
end

XTest = [];
YTest = [];
for i = 1:(height(dataTest) - sequenceLength)
    XTest = cat(3, XTest, dataTestStandardized(i:i+sequenceLength-1)');
    YTest = cat(1, YTest, dataTestStandardized(i+sequenceLength));
end
3. 定义网络结构

接下来,我们定义一个复杂的 LSTM 网络结构。

 

Matlab

深色版本

% 定义网络结构
inputSize = 1; % 输入特征数
numHiddenUnits = 256; % LSTM 层的隐藏单元数
numResponses = 1; % 输出特征数

layers = [
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits, 'OutputMode', 'last')
    fullyConnectedLayer(numResponses)
    regressionLayer
];
4. 设置训练选项

定义训练选项,包括最大迭代次数、批量大小、初始学习率等。

 

Matlab

深色版本

options = trainingOptions('adam', ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 64, ...
    'InitialLearnRate', 0.001, ...
    'GradientThreshold', 1, ...
    'Verbose', false, ...
    'Plots', 'training-progress');
5. 训练模型

使用 trainNetwork 函数训练模型。

 

Matlab

深色版本

% 训练模型
net = trainNetwork(XTrain, YTrain, layers, options);
6. 测试模型

加载测试数据并评估模型的性能。

 

Matlab

深色版本

% 进行预测
YPred = predict(net, XTest, 'MiniBatchSize', 64);

% 反标准化预测结果
YPred = YPred * sigma + mu;
YTest = YTest * sigma + mu;

% 计算均方误差
mse = mean((YPred - YTest).^2);
disp(['Mean Squared Error: ', num2str(mse)]);

% 绘制结果
figure;
plot(dates(1:numTimeStepsTrain), dataTrain, 'b', 'DisplayName', 'Training Data');
hold on;
plot(dates(numTimeStepsTrain+1:end), dataTest, 'r', 'DisplayName', 'Test Data');
plot(dates(numTimeStepsTrain+1:end), YPred, 'g--', 'DisplayName', 'Predicted Data');
legend show;
xlabel('Date');
ylabel('Price');
title('Stock Price Prediction');

完整代码

将上述代码段组合在一起,形成一个完整的 MATLAB 脚本:

 

Matlab

深色版本

% 加载数据集
data = readtable('stock_prices.csv');
prices = data.Price;
dates = data.Date;

% 划分训练集和测试集
numTimeStepsTrain = floor(0.9 * height(data));
dataTrain = prices(1:numTimeStepsTrain);
dataTest = prices(numTimeStepsTrain+1:end);

% 标准化数据
mu = mean(dataTrain);
sigma = std(dataTrain);
dataTrainStandardized = (dataTrain - mu) / sigma;
dataTestStandardized = (dataTest - mu) / sigma;

% 创建序列数据
sequenceLength = 20;
XTrain = [];
YTrain = [];
for i = 1:(numTimeStepsTrain - sequenceLength)
    XTrain = cat(3, XTrain, dataTrainStandardized(i:i+sequenceLength-1)');
    YTrain = cat(1, YTrain, dataTrainStandardized(i+sequenceLength));
end

XTest = [];
YTest = [];
for i = 1:(height(dataTest) - sequenceLength)
    XTest = cat(3, XTest, dataTestStandardized(i:i+sequenceLength-1)');
    YTest = cat(1, YTest, dataTestStandardized(i+sequenceLength));
end

% 定义网络结构
inputSize = 1; % 输入特征数
numHiddenUnits = 256; % LSTM 层的隐藏单元数
numResponses = 1; % 输出特征数

layers = [
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits, 'OutputMode', 'last')
    fullyConnectedLayer(numResponses)
    regressionLayer
];

% 设置训练选项
options = trainingOptions('adam', ...
    'MaxEpochs', 50, ...
    'MiniBatchSize', 64, ...
    'InitialLearnRate', 0.001, ...
    'GradientThreshold', 1, ...
    'Verbose', false, ...
    'Plots', 'training-progress');

% 训练模型
net = trainNetwork(XTrain, YTrain, layers, options);

% 进行预测
YPred = predict(net, XTest, 'MiniBatchSize', 64);

% 反标准化预测结果
YPred = YPred * sigma + mu;
YTest = YTest * sigma + mu;

% 计算均方误差
mse = mean((YPred - YTest).^2);
disp(['Mean Squared Error: ', num2str(mse)]);

% 绘制结果
figure;
plot(dates(1:numTimeStepsTrain), dataTrain, 'b', 'DisplayName', 'Training Data');
hold on;
plot(dates(numTimeStepsTrain+1:end), dataTest, 'r', 'DisplayName', 'Test Data');
plot(dates(numTimeStepsTrain+1:end), YPred, 'g--', 'DisplayName', 'Predicted Data');
legend show;
xlabel('Date');
ylabel('Price');
title('Stock Price Prediction');

数据集准备

假设你的 stock_prices.csv 文件内容如下:

 

深色版本

Date,Price
2023-01-01,100.5
2023-01-02,101.0
2023-01-03,101.5
2023-01-04,102.0
2023-01-05,102.5
...

运行代码

将上述代码保存为一个 .m 文件(例如 lstm_large_model_example.m),然后在 MATLAB 中运行该文件。MATLAB 将加载数据集,训练模型,并评估模型在测试数据上的性能。

结果解释

  • 训练进度图:MATLAB 会在训练过程中绘制训练进度图,显示训练损失和验证损失的变化。
  • 均方误差:训练完成后,代码会输出模型在测试数据上的均方误差(MSE)。
  • 预测结果图:绘制训练数据、测试数据和预测数据的对比图,帮助你直观地评估模型的性能。

通过这个示例,你可以了解如何在 MATLAB 中构建和训练一个复杂的长短期记忆网络(LSTM)模型

LSTM(Long Short-Term Memory)是一种递归神经网络(RNN)的变体,适用于处理和预测时间序列数据,如股票价格。LSTM在股票预测中具有一定的应用价值。 在MATLAB中,可以使用Deep Learning Toolbox来实现LSTM模型进行股票预测。以下是一个简单的使用LSTM进行股票预测MATLAB代码示例: ```matlab % 导入数据 data = csvread('stock_data.csv'); train_data = data(1:800); % 将数据分为训练集和测试集 test_data = data(801:end); % 数据预处理 XTrain = train_data(1:end-1); YTrain = train_data(2:end); % 创建LSTM网络 numFeatures = 1; numResponses = 1; numHiddenUnits = 200; layers = [ ... sequenceInputLayer(numFeatures) lstmLayer(numHiddenUnits,'OutputMode','sequence') fullyConnectedLayer(numResponses) regressionLayer]; % 设置训练选项 options = trainingOptions('adam', ... 'MaxEpochs',100, ... 'GradientThreshold',1, ... 'InitialLearnRate',0.01, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropFactor',0.1, ... 'LearnRateDropPeriod',50, ... 'Verbose',0, ... 'Plots','training-progress'); % 训练模型 net = trainNetwork(XTrain,YTrain,layers,options); % 使用训练好的模型进行预测 XTest = test_data(1:end-1); YTest = test_data(2:end); YPred = predict(net,XTest); % 可视化预测结果 figure plot(YTest) hold on plot(YPred) legend('真实值','预测值') title('股票预测') ``` 请注意,这只是一个简单的示例,可能需要根据具体情况进行调整和改进。此外,股票预测是一个复杂的问题,准确性可能受到多种因素的影响,包括数据质量、特征选择和市场波动性等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蘑菇二号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值