教程 | 阿克曼结构移动机器人的gazebo仿真(九)

本文介绍了如何在gazebo仿真环境中替换阿克曼小车模型,使用STL或dae模型提升视觉效果,并分享了TEB(Timed Elastic Band)局部规划器的参数调优技巧,包括速度、加速度约束、转向半径、膨胀系数等,以及如何通过rqt_reconfigure动态调参。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第九章、模型替换以及TEB调参技巧

1.前言

上节内容让小车在gazebo仿真环境中实现导航,本节内容重点介绍一下gazebo仿真中的模型替换方法以及TEB调参的技巧。

2.模型替换

阿克曼小车项目从第四章开始完全使用的是自己写的模型,当然,用方块与圆柱构建的小车看上去自然不会太过于美观,那是否可以用其他精致的模型来替代方块圆柱呢?答案是肯定的,URDF支持加载STL与dae格式的模型文件。可以用第一章从SW中导出的tianracer模型来做一个替换。将第一章中的tianracer_description/meshes文件夹拷贝至racebot_description路径下,以替换base_link模型为例修改xacro文件中base_link的visual标签下的geometry标签,添加模型地址,以及在origin标签修改一下位置,代码如下:

<link name="base_link">
        <visual>
            <geometry>
                <!-- <box size="0.28 0.1 0.03"/> -->
                <mesh filename="package://racebot_description/meshes/base_link.STL" />
            </geometry>
            <origin xyz="-0.13 0 0" rpy="0 0 0" />            
            <material name="yellow">
                <color rgba="0.8 0.3 0.1 0.5" />
            </material>
        </visual>
        <collision>
            <geometry>
                <box size="0.28 0.1 0.03" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
    </link>

不要去动collision标签,如果改动则会影响之前计算的惯性参数,复杂模型的惯性参数并不好

### Gazebo阿克曼小车路径规划仿真设置与实现 #### 配置本地代价地图尺寸 为了在 Gazebo 中实现阿克曼小车的路径规划,首先需要配置本地代价地图(local costmap)的宽度和高度。这决定了机器人周围环境感知区域的大小,类似于在 Turtlebot Stage Simulator 中看到的情况[^1]。 ```yaml local_costmap: width: 6.0 # 设置本地代价地图的宽度 height: 6.0 # 设置本地代价地图的高度 ``` #### 基础局部规划器参数调整 基础局部规划器(Base Local Planner)对于非全向移动(non-holonomic)的阿克曼车辆至关重要。通过修改其配置文件中的速度和加速度参数来适应特定类型的机器人运动特性。 ```yaml base_local_planner_params: max_vel_x: 0.5 # 最大线速度 min_vel_x: -0.2 # 最小线速度 max_rotational_vel: 0.8 # 最大角速度 acc_lim_theta: 3.2 # 角度加速度限制 acc_lim_x: 2.5 # 线性加速度限制 ``` #### 创建自定义插件或使用现有工具包 针对阿克曼驱动的小车,在 ROS 和 Gazebo 生态系统中有专门设计的支持库可以帮助简化开发过程。例如 `ackermann_vehicle` 或者其他类似的软件包提供了预构建的功能模块用于快速搭建实验平台。 #### 实现路径规划算法集成 最后一步是将选定的全局/局部路径规划算法集成为整个系统的组成部分。可以考虑采用 Dijkstra、A* 或 RRT 等经典方法作为起点,并根据实际需求进一步优化性能表现。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值