丢棋子问题

本文介绍了如何在给定的棋子数和楼层数下,找到在最坏情况下扔棋子确定不会摔碎的最高楼层的最少次数。通过递归、动态规划等方法解决该问题,重点探讨了最优解法,即利用棋子扔法的性质,当棋子数超过一定值时,可以直接使用二分策略。同时提供了具体的代码实现。
摘要由CSDN通过智能技术生成
丢棋子问题

题目描述

一座大楼有 0 ∼ N 0 \sim N 0N层,地面算作第0层,最高的一层为第N层。已知棋子从第0层掉落肯定不会摔碎,从第i层掉落可能会摔碎,也可能不会摔碎( 1 ⩽ i ⩽ N 1 \leqslant i \leqslant N 1iN)。给定整数N作为楼层数,再给定整数K作为棋子数,返回如果想找到棋子不会摔碎的最高层数,即使在最差的情况下扔的最小次数。一次只能扔一个棋子。

[要求]

时间复杂度在最坏情况下为 O ( n ) O(n) O(n)

输入描述:

输入两个数N, K

输出描述:

输出一个数表示答案。

示例1
输入
10 1
输出
10
说明
因为只有1棵棋子,所以不得不从第1层开始一直试到第10层,在最差的情况下,即第10层是不会摔坏的最高层,最少也要扔10次
示例2
输入
3 2
输出
2
说明
先在2层扔1棵棋子,如果碎了,试第1层,如果没碎,试第3层
示例3
输入
105 2
输出
14
说明
第一个棋子先在14层扔,碎了则用仅存的一个棋子试1~13层
若没碎,第一个棋子继续在27层扔,碎了则用仅存的一个棋子试15~26层
若没碎,第一个棋子继续在39层扔,碎了则用仅存的一个棋子试28~38层
若没碎,第一个棋子继续在50层扔,碎了则用仅存的一个棋子试40~49层
若没碎,第一个棋子继续在60层扔,碎了则用仅存的一个棋子试51~59层
若没碎,第一个棋子继续在69层扔,碎了则用仅存的一个棋子试61~68层
若没碎,第一个棋子继续在77层扔,碎了则用仅存的一个棋子试70~76层
若没碎,第一个棋子继续在84层扔,碎了则用仅存的一个棋子试78~83层
若没碎,第一个棋子继续在90层扔,碎了则用仅存的一个棋子试85~89层
若没碎,第一个棋子继续在95层扔,碎了则用仅存的一个棋子试91~94层
若没碎,第一个棋子继续在99层扔,碎了则用仅存的一个棋子试96~98层
若没碎,第一个棋子继续在102层扔,碎了则用仅存的一个棋子试100、101层
若没碎,第一个棋子继续在104层扔,碎了则用仅存的一个棋子试103层
若没碎,第一个棋子继续在105层扔,若到这一步还没碎,那么105便是结果
备注:

1 ⩽ N , K ⩽ 1 0 6 1 \leqslant N,K \leqslant 10^6 1N,K106
保证最后答案在long long范围内


解法一:

递归,设 F(n, k) 表示 n 层楼有 k 个棋子在最差情况下扔的最少次数。

  1. 若 n == 0 ,则 F(0, k) = 0 ;

  2. 若 k == 1 ,也就是有 n 层楼,只有一个棋子,只能从第一层开始一层一层的尝试,则 F(n, 1) = n;

  3. 对于一般情况,我们需要考虑第 1 个棋子需要先从哪层开始扔,假设从第 i 层开始扔:

    1)若碎了,那么没有必要尝试第 i 层以上的楼层,所以变成了 i-1 层楼,k-1 个棋子,总步数为 1 + F(i-1, k-1);

    2) 若没碎,那么没有必要尝试第 i 层以下的楼层,所以变成了 n-i 层楼,k 个棋子,总步数为 1 + F(n-i, k);

    根据题意,在 1)和 2)中哪个是最差的,应该返回哪个。

时间复杂度为 O ( n ! ) O(n!) O(n!)

解法二:

动态规划,将法一中的递归转化为二维动态规划,减少重复状态计算(也可以对法一进行记忆化搜索,同样的道理)。

f [ 0 ] [ k ] = 0 f[0][k]=0 f[0][k]=0 f [ n ] [ 1 ] = n f[n][1] = n f[n][1]=n f [ n ] [ k ] = m i n { m a x { f [ i − 1 ] [ k − 1 ] , f [ n − i ] [ k ] } ( 1 ⩽ i ⩽ n ) } + 1 f[n][k]=min\{ max \{ f[i-1][k-1], f[n-i][k] \}(1 \leqslant i \leqslant n) \} + 1 f[n][k]=min{max{f[i1][k1],f[ni][k]}(1in)}+1

时间复杂度 O ( n 2 × k ) O(n^{2} \times k) O(n2×k)

解法三:

法二中的动态规划,可以使用滚动数组优化,不过只是优化了空间,时间复杂度还是不变。。。

解法四:

四边形不等式优化。太菜了,看不懂这个。。。时间复杂度为 O ( n 2 ) O(n^2) O(n2)

解法五(最优解):

反过来思考 k 个棋子扔 m 次,最多可以扔多少层楼。打表可以发现:

在这里插入图片描述

可以发现: f [ i ] [ j ] = f [ i ] [ j − 1 ] + f [ i − 1 ] [ j − 1 ] + 1 f[i][j]=f[i][j-1] + f[i-1][j-1] + 1 f[i][j]=f[i][j1]+f[i1][j1]+1 ,且数据增加的非常快,所以可以考虑使用这个表来求解。

并且 n 层楼完全用二分的方式扔 log ⁡ n + 1 \log n + 1 logn+1 次就可以确定哪层楼是会碎的最低楼层,所以当棋子数大于 log ⁡ n + 1 \log n + 1 logn+1 时,直接返回 log ⁡ n + 1 \log n + 1 logn+1

法五代码:
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1e6;
int f[N];

int log2( int x ) {
    int ret = -1;
    while ( x ) {
        ++ret;
        x >>= 1;
    }
    return ret;
}

int solve(int n, int k) {
    int log2times = log2( n ) + 1;
    if ( k >= log2times ) return log2times;
    int ret = 0;
    int tmp, pre;
    while ( true ) {
        ++ret;
        pre = 0;
        for ( int i = 0; i < k; ++i ) {
            tmp = f[i];
            f[i] += pre + 1;
            if ( f[i] >= n ) return ret;
            pre = tmp;
        }
    }
    return -1;
}

int main(void) {
    int n, k;
    scanf("%d%d", &n, &k);
    printf("%d\n", solve(n, k));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值