TensorFlow(五)——MNIST分类值RNN

import input_data
import tensorflow as tf
import numpy as np

mnist = input_data.read_data_sets('data/', one_hot=True)

#设置训练超参数
lr = 0.001
training_iters = 100000
batch_size = 128

#设置神经网络参数
n_inputs = 28 #输入层的n
n_steps = 28
n_hidden_units = 128
n_classes = 10

#输入数据占位符
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])

#定义权重
weights = {
    'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
    'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
    'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
    'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}

#定义RNN模型
def RNN(X, weights, biases):
    
    #转化输入的X==>(128 batch * 28 steps, 28 inputs)
    X = tf.reshape(X, [-1, n_inputs])
    
    #进入隐藏层
    X_in = tf.matmul(X, weights['in']) + biases['in']
    X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
    
    #采用LSTM
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, 
                                            state_is_tuple=True)
    init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
    
    outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=init_state, time_major=False)
    
    results = tf.matmul(final_state[1], weights['out']) + biases['out']
    return results

#定义损失函数和优化器
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)

#定义模型预测结果和评价方法
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    step = 0
    while step * batch_size < training_iters:
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
        sess.run([train_op], feed_dict={
            x: batch_xs,
            y: batch_ys,
        })
        if step % 20 == 0:
            print (sess.run(accuracy, feed_dict={
                x: batch_xs,
                y: batch_ys,
            }))
        step += 1

结果:

0.171875
0.671875
0.8046875
0.8203125
0.8203125
0.8671875
0.8515625
0.890625
0.8984375
0.859375
0.921875
0.9375
0.8671875
0.9296875
0.9296875
0.9453125
0.9296875
0.984375
0.9140625
0.9609375
0.96875
0.9765625
0.9609375
0.96875
0.9453125
0.9609375
0.9453125
0.9609375
0.9609375
0.96875
0.953125
0.96875
0.9765625
0.9609375
0.96875
0.953125
0.984375
0.9765625
0.9453125
0.9453125

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值