import input_data
import tensorflow as tf
import numpy as np
mnist = input_data.read_data_sets('data/', one_hot=True)
#设置训练超参数
lr = 0.001
training_iters = 100000
batch_size = 128
#设置神经网络参数
n_inputs = 28 #输入层的n
n_steps = 28
n_hidden_units = 128
n_classes = 10
#输入数据占位符
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])
#定义权重
weights = {
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}
#定义RNN模型
def RNN(X, weights, biases):
#转化输入的X==>(128 batch * 28 steps, 28 inputs)
X = tf.reshape(X, [-1, n_inputs])
#进入隐藏层
X_in = tf.matmul(X, weights['in']) + biases['in']
X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
#采用LSTM
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0,
state_is_tuple=True)
init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=init_state, time_major=False)
results = tf.matmul(final_state[1], weights['out']) + biases['out']
return results
#定义损失函数和优化器
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
#定义模型预测结果和评价方法
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
sess.run([train_op], feed_dict={
x: batch_xs,
y: batch_ys,
})
if step % 20 == 0:
print (sess.run(accuracy, feed_dict={
x: batch_xs,
y: batch_ys,
}))
step += 1
结果:
0.171875
0.671875
0.8046875
0.8203125
0.8203125
0.8671875
0.8515625
0.890625
0.8984375
0.859375
0.921875
0.9375
0.8671875
0.9296875
0.9296875
0.9453125
0.9296875
0.984375
0.9140625
0.9609375
0.96875
0.9765625
0.9609375
0.96875
0.9453125
0.9609375
0.9453125
0.9609375
0.9609375
0.96875
0.953125
0.96875
0.9765625
0.9609375
0.96875
0.953125
0.984375
0.9765625
0.9453125
0.9453125