Inverse/Implicit Function Theorem

Chapter 4 Inverse Function Theorem

这个章节讲得很好, 还引用了庄子秋水中的一段话, 大佬啊.

4.1 The Inverse Function Theorem

映射 F : R n → R m F: \mathbb{R}^n \rightarrow \mathbb{R}^m F:RnRm p 0 p_0 p0可微, 若存在 D F ( p 0 ) ∈ R m × n DF(p_0) \in \mathbb{R}^{m \times n} DF(p0)Rm×n使得
lim ⁡ h → 0 ∣ F ( p 0 + h ) − F ( p 0 ) − D F ( p 0 ) h ∣ ∣ h ∣ = 0. \lim_{h\rightarrow 0} \frac{|F(p_0+h)-F(p_0)-DF(p_0)h|}{|h|}=0. h0limhF(p0+h)F(p0)DF(p0)h=0.

定理4.1(逆函数定理): F : U → R n F:U\rightarrow \mathbb{R}^n F:URn为一 C 1 C^1 C1映射, 其中 U ⊂ R n U \subset \mathbb{R}^n URn为一开集, p 0 ∈ U p_0 \in U p0U, 假设 D F ( p 0 ) DF(p_0) DF(p0)可逆, 则存在开集 V , W V, W V,W分别包含 p 0 , F ( p 0 ) p_0, F(p_0) p0,F(p0)使得 F F F V V V上的限制是一个双射, 且其在 W W W的逆映射是 C 1 C^1 C1的. 此外, 若 F F F U U U上是 C k , 1 ≤ k ≤ ∞ C^k, 1\le k \le \infty Ck,1k则其逆映射也是 C k C^k Ck的.

首先是需要证明在 p 0 p_0 p0附近的对应是一一的, 这用到了
T ( x ) = L − 1 ( L x − F ( x ) + y ) , T(x)=L^{-1}(Lx-F(x)+y), T(x)=L1(LxF(x)+y),
这一压缩映射(首先得证明它是压缩映射, 同时在此过程中可确定 W W W).
第二步是证明逆映射的连续性, 然后是可微性.

最后 C k C^k Ck的证明可由, D F ( G ( y ) ) D G ( y ) = I DF(G(y))DG(y)=I DF(G(y))DG(y)=I得到
D F − 1 ( y ) = ( D F ( F − 1 ( y ) ) ) − 1 . DF^{-1} (y)=(DF(F^{-1}(y)))^{-1}. DF1(y)=(DF(F1(y)))1.

The Implicit Function Theorem

定理4.3 (隐函数定理): F : U → R m F:U \rightarrow \mathbb{R}^m F:URm为定义在开集 U ⊂ R n × R m U \subset \mathbb{R}^n \times \mathbb{R}^m URn×Rm上的 C 1 C^1 C1映射. 假设 ( p 0 , q 0 ) ∈ U (p_0, q_0) \in U (p0,q0)U满足 F ( p 0 , q 0 ) = 0 F(p_0,q_0)=0 F(p0,q0)=0, 且 D y F ( p 0 , q 0 ) D_yF(p_0, q_0) DyF(p0,q0)可逆. 则存在开集 V 1 × V 2 V_1 \times V_2 V1×V2包含 ( p 0 , q 0 ) (p_0, q_0) (p0,q0)和一个 C 1 C^1 C1映射 φ : V 1 → V 2 \varphi:V_1 \rightarrow V_2 φ:V1V2, φ ( p o ) = q 0 \varphi(p_o)=q_0 φ(po)=q0使得
F ( x , φ ( x ) ) = 0 , ∀ x ∈ V 1 . F(x, \varphi(x))=0, \forall x \in V_1. F(x,φ(x))=0,xV1.
F F F C k C^k Ck的, 则 φ \varphi φ也是 C k C^k Ck的, 1 ≤ k ≤ ∞ 1 \le k \le \infty 1k. 此外, 此映射在所定义的开集合(似乎需要加以限制)上是唯一的.

证明考虑下列映射
Φ ( x , y ) = ( x , F ( x , y ) ) , \Phi(x,y)=(x,F(x,y)), Φ(x,y)=(x,F(x,y)),
并利用逆函数定理.

4.3 Curves and Surfaces

这是逆函数定理和隐函数定理的一个应用, 详见原文, 内容还是很有趣的.

4.4 The Morse Lemma

non-degenerate critical point: 即一阶梯度为0, 二阶梯度(黑塞矩阵)非奇异的点.

定理4.9 (Morse引理): f f f为一定义在 R n \mathbb{R}^n Rn的一个开集上, 且 p 0 p_0 p0为一非退化关键点( non-degenerate critical point). 则存在一个光滑的局部坐标变换 x = Φ ( y ) , p 0 = Φ ( 0 ) x=\Phi(y), p_0=\Phi(0) x=Φ(y),p0=Φ(0)使得
f ~ ( y ) = f ( Φ ( y ) ) = f ( p 0 ) − y 1 2 − y 2 2 − ⋯ − y m 2 + y m + 1 2 + ⋯ + y n 2 , \tilde{f}(y)=f(\Phi(y))=f(p_0)-y_1^2-y_2^2-\cdots-y_m^2+y_{m+1}^2 + \cdots + y_n^2, f~(y)=f(Φ(y))=f(p0)y12y22ym2+ym+12++yn2,
其中 m , 0 ≤ m ≤ n m, 0\le m \le n m,0mn为关键点的index.

注: 原文中并没有 f ( p 0 ) f(p_0) f(p0)这一项, 个人认为是作者的笔误.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值