隐函数存在定理&&隐函数的高阶导数

现在已知两个变量之间的一个关系:F(x,y)=0,能否确定一个函数关系,即y=f(x)?

定理

F ( x , y ) 在 P ( x 0 . y 0 ) 的 邻 域 有 连 续 的 偏 导 数 , 且 方 程 F ( x 0 , y 0 ) = 0 的 F y ( x 0 , y 0 ) ≠ 0 , 则 在 P ( x 0 . y 0 ) 的 邻 域 内 能 唯 一 确 定 一 个 连 续 且 具 有 连 续 导 数 的 函 数 y = f ( x ) 它 满 足 y 0 = f ( x 0 ) , 且 d y d x = − F x F y F(x,y)在P(x_0.y_0)的邻域有连续的偏导数,\\且方程F(x_0,y_0)=0的F_y(x_0,y_0)\neq 0,\\则在P(x_0.y_0)的邻域内能唯一确定一个连续且具有连续导数的函数y=f(x)\\ 它满足y_0=f(x_0),且\frac{dy}{dx}=-\frac{F_x}{F_y} F(x,y)P(x0.y0)F(x0,y0)=0Fy(x0,y0)=0,P(x0.y0)y=f(x)y0=f(x0),dxdy=FyFx

证明(链式法则)

F ( x , y ) = 0 F(x,y)=0 F(x,y)=0
欲 证 y = y ( x ) 存 在 , 求 d y d x , 由 链 式 求 导 法 则 将 F 对 x 求 导 F x + F y ∗ d y d x = 0 解 出 d y d x 即 可 ( 注 : 也 可 用 一 阶 微 分 形 式 的 不 变 性 证 明 F x d x + F y d y = 0 ) 欲证y=y(x)存在,求\frac{dy}{dx},\\ 由链式求导法则\\将F对x求导\\ F_x+F_y*\frac{dy}{dx}=0\\ 解出\frac{dy}{dx}即可\\ (注:也可用一阶微分形式的不变性证明F_xdx+F_ydy=0) y=y(x),dxdy,FxFx+Fydxdy=0dxdy(Fxdx+Fydy=0)

即隐函数求一阶导数有两种方法:直接微分得到微分的表示或链式法则

隐函数的高阶导数

例:
求 y ′ ′ , y = y ( x ) 由 e y = x y 确 定 由 链 式 求 导 法 对 x 求 一 阶 导 与 二 阶 导 { e y ∗ y ′ − y + − x ∗ y ′ = 0 ( e y − x ) ∗ y ′ ′ + e y ∗ ( y ′ ) 2 − 2 ∗ y ′ = 0 由 以 上 方 程 组 解 出 y ′ , y ′ ′ 即 可 求y'',y=y(x)由e^y=xy确定\\ 由链式求导法对x求一阶导与二阶导\\ \left\{\begin{array}{l} e^y*y'-y+-x*y'=0 \\(e^y-x)*y''+e^y*(y')^2-2*y'=0 \end{array}\right. \\由以上方程组解出y',y''即可 y,y=y(x)ey=xyx{eyyy+xy=0(eyx)y+ey(y)22y=0y,y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值