Chapter 17 Causal Survival Analysis

HernKaTeX parse error: Can't use function '\'' in math mode at position 1: \̲'̲{a}n M. and Robins J. Causal Inference: What If.

这一章节主要介绍了如何在生存模型中进行因果分析.

17.1 Hazards and risks

Administrative censoring: 指开始追踪和停止追踪的时间有差异.

设生存时间为 T T T, 并让 k k k表示第 k k k个时间单位.

生存概率: P r [ T > k ] \mathrm{Pr}[T > k] Pr[T>k].

risk: 1 − P r [ T > k ] = P r [ T ≤ k ] 1 - \mathrm{Pr}[T > k] = \mathrm{Pr}[T \le k] 1Pr[T>k]=Pr[Tk].

hazard: P r [ T = k ∣ T > k − 1 ] \mathrm{Pr}[T=k|T>k-1] Pr[T=kT>k1].

显然生存概率是单调递减的, 而risk是单调递增的, 但是hazard并不绝对.

17.2 From hazards to risks

D k = 1 D_k=1 Dk=1表示个体在第 k + 1 k+1 k+1个时间单位状态为死亡(0则表示生存).

P r [ D k = 0 ] = ∏ m = 1 k P r [ D m = 0 ∣ D m − 1 = 0 ] . \mathrm{Pr}[D_k = 0] = \prod_{m=1}^k \mathrm{Pr}[D_m=0|D_{m-1}=0]. Pr[Dk=0]=m=1kPr[Dm=0Dm1=0].

注:
P r [ D m = 0 ∣ D m − 1 = 0 ] = P r [ D m = 0 ] P r [ D m − 1 = 0 ] P r [ D 1 = 0 ] = 1. \mathrm{Pr}[D_m=0|D_{m-1}=0] = \frac{\mathrm{Pr}[D_m=0]}{\mathrm{Pr}[D_{m-1}=0]} \\ \mathrm{Pr}[D_1 = 0] = 1. Pr[Dm=0Dm1=0]=Pr[Dm1=0]Pr[Dm=0]Pr[D1=0]=1.

且容易证明:
P r [ D k = 0 ] = P r [ T > k ] P r [ D k = 1 ] = P r [ T ≤ k ] P r [ D k = 1 ∣ D k − 1 = 0 ] = P r [ T = k ∣ T > k − 1 ] . \mathrm{Pr}[D_{k} = 0] = \mathrm{Pr}[T > k] \\ \mathrm{Pr}[D_{k} = 1] = \mathrm{Pr}[T \le k] \\ \mathrm{Pr}[D_{k} = 1|D_{k-1} = 0] = \mathrm{Pr}[T = k|T > k-1]. Pr[Dk=0]=Pr[T>k]Pr[Dk=1]=Pr[Tk]Pr[Dk=1Dk1=0]=Pr[T=kT>k1].

这相当于, 只要我们建模出hazards, 就能够根据上面的公式推导出risks.

P r [ D k = 0 ∣ A = 0 ] \mathrm{Pr}[D_k=0|A=0] Pr[Dk=0A=0]
采用同样的方法.

17.3 Why censoring matters

如果考虑administrative censoring, 则我们实际上需要考虑
P r [ D k c ˉ = 0 ˉ = 0 ∣ A = a ] , c ˉ = ( c 1 , c 2 , ⋯   , c k e n d ) . \mathrm{Pr}[D_k^{\bar{c}=\bar{0}}=0|A=a], \bar{c} = (c_1, c_2, \cdots, c_{k_{end}}). Pr[Dkcˉ=0ˉ=0A=a],cˉ=(c1,c2,,ckend).
其等价于
∏ m = 1 k P r [ D m = 0 ∣ D m − 1 = 0 , C m = 0 , A = a ] . \prod_{m=1}^k \mathrm{Pr}[D_m=0|D_{m-1}=0, C_m=0, A=a]. m=1kPr[Dm=0Dm1=0,Cm=0,A=a].
注意, 这是因为 C m = 0 C_m=0 Cm=0表示
C m ′ = 0 , ∀ m ′ ≤ m . C_{m'} = 0, \quad \forall m' \le m. Cm=0,mm.
所以在这种情况下, 我们需要对
P r [ D m = 0 ∣ D m − 1 = 0 , C m = 0 , A = a ] . \mathrm{Pr}[D_m=0|D_{m-1}=0, C_m=0, A=a]. Pr[Dm=0Dm1=0,Cm=0,A=a].

17.4 IP weighting of marginal structural models

和普通的IP weighting一样我们需要估计
P r ^ [ A = 1 ∣ L ] . \widehat{\mathrm{Pr}} [A=1|L]. Pr [A=1L].

17.5 The parametric g-formula

需要估计
P r [ D m + 1 = 0 ∣ D m = 0 , L = l , A = a ] . \mathrm{Pr}[D_{m+1}=0|D_m=0, L=l, A=a]. Pr[Dm+1=0Dm=0,L=l,A=a].

17.6 G-estimation of structural nested models

Fine Point

Competing events

censoring 的一种特殊情况.

The hazards of hazard ratios

Models for survival analysis

Technical Point

Approximating the hazard ratio via a logistic model

Structural nested cumulative failure time (CFT) models and cumulative survival time (CST) models

Artificial censoring

竞争风险模型是生存分析中一种用于处理存在多个相互竞争的事件发生的统计模型。在传统的生存分析模型中,通常只考虑单一的事件发生,如死亡或疾病复发。而在竞争风险模型中,我们需要考虑不同的事件分类,如死亡、复发、移植等,并且这些事件之间可能存在相互竞争的关系。 竞争风险模型的核心思想是将研究对象的生存状态划分为多个互斥的状态。在不同的状态中,个体会受到不同的风险影响,可能发生不同的事件。通过建立不同事件发生的累积分布函数,可以对每个事件的概率进行估计。 竞争风险模型的分析方法有很多,其中最常用的是Cumulative Incidence Function (CIF)方法。该方法可以计算不同事件在一定时间内发生的概率,提供了一种直观的方式来描述竞争事件之间的关系。 竞争风险模型在许多领域都有广泛应用,如医学研究、金融风险管理等。在医学研究中,竞争风险模型可以应用于研究不同因素对疾病复发、死亡等事件的影响。在金融风险管理中,竞争风险模型可以帮助识别和评估不同风险因素对企业盈利、市场份额等的影响。 总之,竞争风险模型是一种用于处理多个竞争事件发生的统计模型,可以提供有关不同事件发生概率的估计。它在不同领域的应用可以帮助人们更好地理解和分析竞争事件之间的相互关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值