插值是在诸如放大、缩小、旋转和几何校正等任务中广泛应用的基本工具。插值是用一只数据来估计未知位置的数值的处理。如下图所示。
最近邻插值:
将原图像中最近邻的灰度值赋值给了每个新位置。是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真(严重改变原图像的纹理信息),比如,当由目标图的坐标反推得到的源图的的坐标是一个浮点数的时候,采用了四舍五入的方法,直接采用了和这个浮点数最接近的象素的值。如面的例子所示:
234 38 22
67 44 12
89 65 63
| |
| |
\ /
\/
234 38 22 22
67 44 12 12
89 65 63 63
89 65 63 63
双线性插值:
又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值,该方法减少了图像的异质性,增加图像的同质性。
假如我们想得到未知函数f在点P&