图像处理入门:传统插值

本文介绍了图像处理中的插值技术,包括最近邻插值、双线性插值和双三次内插。最近邻插值简单但效果不佳,易导致马赛克和失真。双线性插值通过两次线性插值减少图像异质性,提高图像质量。双三次内插则采用更复杂的权重计算,提供更平滑的图像效果。
摘要由CSDN通过智能技术生成

插值是在诸如放大、缩小、旋转和几何校正等任务中广泛应用的基本工具。插值是用一只数据来估计未知位置的数值的处理。如下图所示。

最近邻插值:

    将原图像中最近邻的灰度值赋值给了每个新位置。是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真(严重改变原图像的纹理信息),比如,当由目标图的坐标反推得到的源图的的坐标是一个浮点数的时候,采用了四舍五入的方法,直接采用了和这个浮点数最接近的象素的值。如面的例子所示:

234   38    22
67     44    12

89     65    63

        | |

        | |

    \        /

        \/

234    38     22     22  
67      44     12     12  
89      65     63     63  
89      65     63     63 

双线性插值:

又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值,该方法减少了图像的异质性,增加图像的同质性。

假如我们想得到未知函数f在点P&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值