数学:梯度的理解

方向导数的解释

函数 z=f(x,y) 表示空间曲面 S, 则点 P(x0, y0,z0) 在 S 上, 过点 P 和 P0 的 u 方向的垂直平面交 S 于曲线 C, f 沿方向 u 的变化率是 C 在点 P 的切线的斜率, 观察下面动画:

方向导数和梯度的关系

当 u 与 ▽f 同方向时, 函数 f 增加最快, 类似, 反方向减少最快.。而正交于梯度的方向 u 是 f 变化率为 0 的方向。

函数 f(x) = x^2/2+y^2/2 在 (1,1) 增加最快的方向梯度的方向, 它对应于在点 (1,1,1) 在曲面上最陡峭的方向。

其中红色射线表示梯度。

梯度和等高线的切线

函数 f(x,y) 的定义域的每个点 (x0,y0)(x0,y0), f 的梯度正交于过 (x0,y0)(x0,y0) 的等高线.

创建互动等高线,把法线显示为一个点:

一些重要的性质:

  • 函数z=f(x,y)在点p(x,y)的梯度的方向与过点p的等高线f(x,y)=c在这点的法线一个方向相同。梯度的方向与等高线切线方向垂直。
  • 沿梯度方向的方向导数>0,再加上方向导数定义中t→0+,也就是说函数在梯度方向的变化率是正的,所以函数值沿梯度要变大,即从低等高线指向高等高线。
  • 梯度是方向导数中的最大值,梯度一定是函数上升的方向, 最小值为0, 即到达山顶。
  • 方向导数是各个方向上的导数

没有更多推荐了,返回首页