数学知识整理:函数 & 梯度

1 函数的基本概念

1.1 函数的定义

        

ABf
\subseteq R\subseteq R一元函数
\subseteq R^n\subseteq R

n元函数

\subseteq R^n\subseteq R^m

n元m维向量函数

1.2 内点,外点和边界点

给定集合D \subseteq R^n,对\forall p\in R^n,如果满足”条件“,那么p是:

条件p的分类
\exists \delta >0, s.t \{q \in R^n| d(p,q) \le \delta\} \subseteq DD的内点
\exists \delta >0, s.t \{q \in R^n| d(p,q) \le \delta\}^c \subseteq D (c表示补集)D的外点
\forall \delta >0, \exists q_1 \in D, q_2 \in D^c, s.t. \quad d(p,q_1) \le \delta, d(p,q_2) \le \deltaD的边界点

1.2.1 性质

  • P是D的内点<——>P是D^c的外点
  • P是D的边界点<——>任意以P为圆心的圆盘既有D的内点也有D的外点

1.3 函数的连续性

 1.3.1 闭区间上的多元连续函数的基本性质

  • 有界性
  • 介值定理
    • 设函数f(x)在闭区间[a,b]上连续,并且f(a)≠f(b),那么一定存在一个x_0 \in (a,b),使得f(a)<f(x_0)<f(b),或者f(a)>f(x_0)>f(b)
  • 最值定理
    • 设函数f(x)在闭区间[a,b]上连续,则函数f(x)在闭区间[a,b]上就一定存在最大值和最小值。
  • 零点定理
    • 设函数f(x)在闭区间[a,b]上连续,并且f(a)f(b)<0,那么至少存在一个x_0 \in (a,b),使得f(x_0)=0

1.4 夹逼定理

 1.4.1 举例

0 \le (x^2+y^2)sin(\frac{1}{x})cos(\frac{1}{x}) \le (x^2+y^2)

\lim_{x \rightarrow 0, y\rightarrow 0}(x^2+y^2)=0

所以\lim_{x \rightarrow 0, y\rightarrow 0}(x^2+y^2)sin(\frac{1}{x})cos(\frac{1}{x}) =0

lim_{x \rightarrow 0,y \rightarrow 0} \frac{xy}{\sqrt{x^2+y^2}}

  • x,y 同号:

0 \le \frac{xy}{\sqrt{x^2+y^2}} \le \frac{xy}{\sqrt{2xy}} =\frac{\sqrt{2}}{2}\sqrt{xy} \le \frac{1}{2}\sqrt{x^2+y^2}

\lim_{x \rightarrow 0,y \rightarrow 0} \frac{1}{2}\sqrt{x^2+y^2}=0

所以根据夹逼定理

lim_{x \rightarrow 0,y \rightarrow 0} \frac{xy}{\sqrt{x^2+y^2}}=0

  • x,y 异号

几乎同理,故略

 2 偏微商

f_x(x_0,y_0)=\frac{\partial f}{\partial x}|_{(x_0,y_0)}=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}

f_y(x_0,y_0)=\frac{\partial f}{\partial y}|_{(x_0,y_0)}=\lim_{\Delta y \rightarrow 0}\frac{f(x_0,y_0 +\Delta y)-f(x_0,y_0)}{\Delta y}

如果\frac{\partial f}{\partial x}|_{(x_0,y_0)} 存在,那么g(x)=f(x,y_0)x=x_0处连续

如果\frac{\partial f}{\partial y}|_{(x_0,y_0)} 存在,那么h(y)=f(x_0,y)y=y_0处连续

2.1 偏微商几何意义

 

3 全微分

全增量 \Delta z =f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)

如果\exists A,B \in R, s.t \quad \Delta x= A\Delta x+B\Delta y + o(\sqrt{(\Delta x)^2+(\Delta y)^2}) ,那么线性函数A\Delta x+B\Delta y称为f(x,y)在(x_0,y_0)处的全微分,记作dz|_{(x_0,y_0)}=A \Delta x+B \Delta y=Adx+Bdy

  • 如果f(x,y)在(x_0,y_0)处可微,那么A=\frac{\partial f}{\partial x}|_{(x_0,y_0)},B=\frac{\partial f}{\partial y}|_{(x_0,y_0)}

  • 如果 \frac{\partial f}{\partial x}|_{(x_0,y_0)}\frac{\partial f}{\partial y}|_{(x_0,y_0)}存在,且在(x_0,y_0)处二元连续,那么 f(x,y)在(x_0,y_0) 的全微分存在

3.1 全微分应用

3.1.1 近似计算

 3.1.2 估计误差

 

 3 求偏导数

3.1.1 近似计算

4 连续、可导、可微之间的关系

5 梯度

全微分:

(x_0,y_0,z_0)处的切平面P:

z-z_0=f_x|_{(x_0,y_0)}(x-x_0)+f_y|_{(x_0,y_0)}(y-y_0)

5.1 方向微商

给定直线l,过点(x_0,y_0),方向为(cos \alpha, sin \alpha),函数f在l方向上的变化率成为方向微商。

记为\frac{\partial f}{\partial l}|_{(x_0,y_0)}=\lim_{t \rightarrow 0} \frac{f(x_0+tcos \alpha,y_0+tsin \alpha)-f(x_0,y_0)}{t}

如果df存在,那么\frac{\partial f}{\partial l}|_{(x_0,y_0)}=f_x cos \alpha +f_y sin \alpha

定义grad(f)=\{f_x,f_y\}=f_x\cdot i+f_y \cdot j =g 

l=(cosα,sinα)

那么 \frac{\partial f}{\partial l}=grad(f) \cdot (cos \alpha, sin \alpha)=|grad(f)| cos \theta θ是梯度和α的夹角

——>grad(f)的方向是该点在z处改变最大的方向

 

5.1.0 梯度的定义

定义向量 grad(f)=\{f_x,f_y\}=f_x i+f_y j

于是\frac{\partial f}{\partial l}|_{(x_0,y_0)}=grad(f) \cdot (cos \alpha, sin \alpha)

5.1.1 梯度的几何解释 

  • 梯度的方向是该点处改变最大的方向
  • 梯度的模长是该方向的微商的绝对值
  • 给定二元可微函数f,以及一个点M,如果grad(f)不是零向量,那么grad(f)和过M点的等高线的切线垂直

5.1.2 举例

求函数z=ln(x^2+y^2)在点M(x_0,y_0)上沿与此点等高线垂直的方向导数

解:grad(f)=(f_x,f_y)=(\frac{2x_0}{x_0^2+y_0^2},\frac{2y_0}{x_0^2+y_0^2})

方向向量(cos \alpha,sin \alpha)=(\frac{x_0}{\sqrt{x_0^2+y_0^2}},\frac{y_0}{\sqrt{x_0^2+y_0^2}})

所以\frac{\partial f}{\partial l}|_{(x_0,y_0)}=(\frac{2x_0}{x_0^2+y_0^2},\frac{2y_0}{x_0^2+y_0^2}) \cdot (\frac{x_0}{\sqrt{x_0^2+y_0^2}},\frac{y_0}{\sqrt{x_0^2+y_0^2}})=\frac{2}{\sqrt{x_0^2+y_0^2}}

也即|grad(f)|

 5.2梯度的运算规则

u,v是函数,c是常数

  • grad(u±v)=grad(u)±grad(v)
  • grad(uv)=ugrad(v)+vgrad(u)
    • 证明grad(uv)=(\frac{\partial uv}{\partial x},\frac{\partial uv}{\partial y})=(u_xv+uv_x,u_yv+uv_y)'

                        =u(v_x,v_y)+v(u_x,u_y)=ugrad(v)+vgrad(u)

  • grad(cu)=cgrad(u)
  •  grad(\frac{1}{v})=-\frac{1}{v^2}grad(v)

  • grad(\frac{u}{v})=\frac{vgrad(u)-ugrad(v)}{v^2}

证明:grad(\frac{1}{v})=(\frac{\partial(\frac{1}{v})}{\partial v} \frac{\partial v}{\partial x},\frac{\partial(\frac{1}{v})}{\partial v} \frac{\partial v}{\partial y})=(-\frac{1}{v^2}v_x,-\frac{1}{v^2}v_y)=-\frac{1}{v^2}(v_x,v_y)=-\frac{1}{v^2} grad(v)

  • grad[f(u)]=f'(u)grad(u)

证明:

grad[f(u)]=(\frac{\partial f(u)}{\partial u}\frac{\partial u}{\partial x},\frac{\partial f(u)}{\partial u}\frac{\partial u}{\partial y})

=(f'(u)u_x,f'(u)u_y)=f'(u)(u_x,u_y)=f'(u)grad(u)

  • grad[f(u,v)]=\frac{\partial f}{\partial u}grad(u)+\frac{\partial f}{\partial v}grad(v)

证明

grad[f(u,v)]=(\frac{\partial f(u,v)}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f(u,v)}{\partial v}\frac{\partial v}{\partial x},\frac{\partial f(u,v)}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f(u,v)}{\partial v}\frac{\partial v}{\partial y})

6 复合函数的微分法

 7 隐函数的微分法

7.1 隐函数与显函数

  • 在一元函数或多元函数中,如果函数使用自变量的分析式子明显表示出来的,则称此函数是显函数(eg,y=sinx,z=xy)
  • 如果函数不是由自变量的分析式明显地表示出来的,那么称这种函数关系为隐函数(eg,y^2+x^2=1),我们一般记作F(x,y)=0,F(x,y,z)=0

7.2 隐函数微商计算方法

7.2.1 方程F(x,y) 确定出函数y=f(x)

 

 

进一步,如果求更高阶的y‘’,可以:

 

 

 7.2. 方程F(x,y,z)=0确定出二元函数z=f(x,y)

7.3 方程组+隐函数

 

 7.4 复合函数+隐函数

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值