SOF-SLAM:A Semantic Visual SLAM for Dynamic Environment 2019.10.22
论文出发点:
对于动态场景的SLAM系统,如今一般采用语义信息,要么利用几何信息,或者简单结合的方法进行动态物体检测。
针对问题:
高动态场景的语义地图建立。
方案:
基于RGBD视频流的ORBSLAM2模型,提出一种动态特征提取方法:语义光流法(Semantic Optical Flow—SOF)。
SOF具体作用方式:结合运动前的语义信息(由SegNet获得),辅助对极几何的计算,然后过滤掉真正的动态特征。将仅保留了剩余的静态特征送入跟踪优化模块,实现了动态环境下相机姿态的精确估计。
具体实现:

整个系统与ORBSLAM区别就在于跟踪线程新增了SOF模块。接下来将介绍一下SOF,框图如下所示:

语义的运动先验信息的含义是,根据物体的语义标签

SOF-SLAM是一种针对动态环境的语义视觉SLAM方法,它利用RGBD视频和SegNet提供的语义信息,通过语义光流法筛选静态特征,实现相机姿态精确估计。与ORBSLAM2相比,主要区别在于跟踪线程增加了SOF模块,有效过滤动态特征。该方法在动态场景的表现优于传统方法,但未来可进一步优化,如采用概率框架提升动态点检测准确性。
最低0.47元/天 解锁文章
827

被折叠的 条评论
为什么被折叠?



