摘要
无人驾驶飞行器(UAVs)在GPS缺失环境下的自主导航是一个具有挑战性的问题,特别是对于小型无人机,其特点是载荷小,电池容量有限。针对上述问题,可能的解决方案是基于视觉的同步定位和映射(SLAM),因为相机的尺寸,低重量,可用性和大的信息带宽规避了所有UAVs的限制。在这篇论文中,我们提出了一种双目视觉SLAM,可以获得非常精确的定位和密集的环境地图,旨在参加欧洲机器人挑战赛(EuRoC),目标是小规模的UAVs工业设施的空中检查。所提出的方法包括一种新的立体里程计算法,依赖于特征跟踪(SOFT),目前在KITTI数据集的所有立体方法中排名第一。基于SOFT进行姿态估计,建立了基于特征的姿态图SLAM算法,并将其命名为SOFT-SLAM。SOFT-SLAM具有完全分离的里程计和映射线程,支持大闭环和全局一致性。它还实现了20hz的恒定时间执行率和确定性的结果,只使用在挑战中使用的机载计算机的两个线程。运行我们的SLAM算法的UAV在EuRoC Challenge 3, Stage IIa-Benchmarking, Task 2中获得了最高的本地化得分。此外,我们还在两个流行的公共数据集上对SOFTSLAM进行了详尽的评估,并将其与其他最先进的方法进行了比较;即ORB-SLAM2和LSD-SLAM。结果表明,SOFT-SLAM对大部分数据集序列具有较好的定位精度,同时具有较低的运行时间。
贡献
- 不使用BA(BA太耗算力),使用SOFT里程计进行定位,达到了0.8%的误差和20hz的速度,目前在KITTI榜单上排名第一。
- 提出的SLAM

本文提出了一种名为SOFT-SLAM的双目视觉SLAM系统,专为无人驾驶飞行器(UAVs)在GPS缺失环境下的自主导航设计。该方法使用SOFT特征进行里程计算,实现高精度定位和密集映射,并在EuRoC挑战赛中取得最佳本地化成绩。SOFT-SLAM具有独立的里程计和映射线程,支持大闭环和全局一致性,且在20Hz下保持恒定执行速率。通过避免使用BA,降低了计算需求,确保了确定性和效率。在多个公开数据集上,SOFT-SLAM的表现优于ORB-SLAM2和LSD-SLAM,展示了其在定位精度和运行时间方面的优势。
最低0.47元/天 解锁文章
1348

被折叠的 条评论
为什么被折叠?



