【论文阅读】SOFT-SLAM

本文提出了一种名为SOFT-SLAM的双目视觉SLAM系统,专为无人驾驶飞行器(UAVs)在GPS缺失环境下的自主导航设计。该方法使用SOFT特征进行里程计算,实现高精度定位和密集映射,并在EuRoC挑战赛中取得最佳本地化成绩。SOFT-SLAM具有独立的里程计和映射线程,支持大闭环和全局一致性,且在20Hz下保持恒定执行速率。通过避免使用BA,降低了计算需求,确保了确定性和效率。在多个公开数据集上,SOFT-SLAM的表现优于ORB-SLAM2和LSD-SLAM,展示了其在定位精度和运行时间方面的优势。

论文:《SOFT-SLAM:Computationally efficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles》( JFR 2017 )

摘要

无人驾驶飞行器(UAVs)在GPS缺失环境下的自主导航是一个具有挑战性的问题,特别是对于小型无人机,其特点是载荷小,电池容量有限。针对上述问题,可能的解决方案是基于视觉的同步定位和映射(SLAM),因为相机的尺寸,低重量,可用性和大的信息带宽规避了所有UAVs的限制。在这篇论文中,我们提出了一种双目视觉SLAM,可以获得非常精确的定位和密集的环境地图,旨在参加欧洲机器人挑战赛(EuRoC),目标是小规模的UAVs工业设施的空中检查。所提出的方法包括一种新的立体里程计算法,依赖于特征跟踪(SOFT),目前在KITTI数据集的所有立体方法中排名第一。基于SOFT进行姿态估计,建立了基于特征的姿态图SLAM算法,并将其命名为SOFT-SLAM。SOFT-SLAM具有完全分离的里程计和映射线程,支持大闭环和全局一致性。它还实现了20hz的恒定时间执行率和确定性的结果,只使用在挑战中使用的机载计算机的两个线程。运行我们的SLAM算法的UAV在EuRoC Challenge 3, Stage IIa-Benchmarking, Task 2中获得了最高的本地化得分。此外,我们还在两个流行的公共数据集上对SOFTSLAM进行了详尽的评估,并将其与其他最先进的方法进行了比较;即ORB-SLAM2和LSD-SLAM。结果表明,SOFT-SLAM对大部分数据集序列具有较好的定位精度,同时具有较低的运行时间。

贡献

  • 不使用BA(BA太耗算力),使用SOFT里程计进行定位,达到了0.8%的误差和20hz的速度,目前在KITTI榜单上排名第一。
  • 提出的SLAM
### ORB-SLAM改进的相关论文 ORB-SLAM是一种基于特征点的视觉同时定位与建图(SLAM)系统,广泛应用于机器人导航、增强现实等领域。近年来,研究者们针对ORB-SLAM的性能提升提出了许多改进方法。以下是一些相关的学术论文[^1]: 1. **《ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras》** 该论文介绍了ORB-SLAM2,这是一个对ORB-SLAM的显著改进版本,支持单目、双目和RGB-D相机,并在精度和鲁棒性方面有所提升[^1]。 2. **《DSO: Direct Sparse Odometry》** 虽然DSO并非直接基于ORB-SLAM,但它提供了一种直接稀疏的方法来估计相机位姿,可以作为ORB-SLAM的一种替代或补充方案[^2]。 3. **《ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM》** ORB-SLAM3进一步扩展了ORB-SLAM的功能,增加了对多地图的支持以及视觉惯性里程计(VIO)的能力,适用于更复杂的场景[^3]。 4. **《Improving ORB-SLAM with Deep Learning Features》** 这篇论文探讨了将深度学习生成的特征融入ORB-SLAM中,以提高其在具有挑战性环境中的表现[^4]。 5. **《Loop Closure Optimization in ORB-SLAM using Bag-of-Words》** 研究人员通过优化ORB-SLAM中的闭环检测机制,利用词袋模型(Bag-of-Words)提升了系统的闭环检测精度[^5]。 ```python # 示例代码:加载ORB-SLAM3并初始化 import orbslam3 # 初始化ORB-SLAM3系统 slam_system = orbslam3.System(vocab_file="vocabulary.txt", settings_file="settings.yaml") slam_system.initialize() # 处理每一帧图像 for frame in video_stream: slam_system.process_image(frame) # 关闭系统 slam_system.shutdown() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值