pandas读取Excel数据的两种方式

  • pd.ExcelFile(path).parse(sheet_name)
  • pd.read_excel(path, sheet_name)

两者区别不大。前者可以通过.sheet_names函数获取包含所有sheet的列表
例:循环读取Excel中的sheet

>>> import pandas as pd
>>> xl = pd.ExcelFile(path)
>>> for sheet_name in xl.sheet_names:
>>>     df = pd.read_excel(xl, sheet_name)
>>> import pandas as pd
>>> xl = pd.ExcelFile(path)
>>> for sheet_name in xl.sheet_names:
>>>     df = xl.parse(sheet_name)
PandasPython 中的一个强大的数据分析和操作库,它提供了快速、灵活和表达式丰富的数据结构,专为处理结构化(表格、多维、异质)和时间序列数据而设计。使用 Pandas 可以很方便地读取和处理 Excel 文件中的数据。 要读取 Excel 文件中的指定数据,可以使用 `pandas.read_excel()` 函数。这个函数允许你通过参数指定从特定的 sheet、范围、列名等方式读取数据。以下是几种常见的使用场景: 1. 读取特定的 sheet: ```python import pandas as pd # 读取 Excel 文件的第二个 sheet df = pd.read_excel('example.xlsx', sheet_name=1) ``` 2. 读取指定的列: ```python # 读取 Excel 文件中名为 'Data' 的 sheet,并只加载 'Column1' 和 'Column2' 这两列 df = pd.read_excel('example.xlsx', sheet_name='Data', usecols=['Column1', 'Column2']) ``` 3. 读取指定范围的数据: ```python # 读取 Excel 文件中名为 'Data' 的 sheet,并只加载第 A1 到 C5 的单元格区域 df = pd.read_excel('example.xlsx', sheet_name='Data', usecols='A:C', skiprows=0, nrows=5) ``` 4. 使用列名或者索引作为 header: ```python # 使用第一行作为列名(header),如果第一行不是列名则设置 header=None df = pd.read_excel('example.xlsx', sheet_name='Data', header=0) ``` 5. 读取多个 sheets 到字典: ```python # 读取名为 'Sheet1' 和 'Sheet2' 的两个 sheets 到一个字典中 dfs = pd.read_excel('example.xlsx', sheet_name=['Sheet1', 'Sheet2']) ``` 使用这些参数,你可以灵活地从 Excel 文件中读取指定的部分数据,进而进行进一步的分析和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值