空间谱估计基础-到达角、发射角、阵列方向图

该基础知识笔记来源于空间谱估计理论与算法(王永亮…等)。

波程差

两个阵元间的波程差为:
τ = 1 c ( x cos ⁡ θ cos ⁡ φ + y sin ⁡ θ cos ⁡ φ + z sin ⁡ φ ) , \tau=\frac{1}{c}(x \cos \theta \cos \varphi+y \sin \theta \cos \varphi+z \sin \varphi), τ=c1(xcosθcosφ+ysinθcosφ+zsinφ), 其中 c c c为光速。

1. 平面阵

设阵元的位置为 ( x k , y k ) , k = 1 , . . . , M (x_k,y_k),k=1,...,M (xk,yk),k=1,...,M,以原点为参考点,另假设信号入射参数为 ( θ i , φ i ) , i = 1 , . . . , N (\theta_i,\varphi_i),i=1,...,N (θi,φi),i=1,...,N,分别为方位角(azimuth angle)和俯仰角(zenith angle),其中方位角表示与 x x x轴的夹角,则有:
τ k i = 1 c ( x k cos ⁡ θ i cos ⁡ φ i + y k sin ⁡ θ i cos ⁡ φ i ) . \tau_{ki}=\frac{1}{c}(x_k \cos \theta_i \cos \varphi_i+y_k \sin \theta_i \cos \varphi_i). τki=c1(xkcosθicosφi+yksinθicosφi).

2. 线阵

设阵元的位置为 x k , k = 1 , . . . , M x_k,k=1,...,M xk,k=1,...,M,以原点为参考点,另假设信号入射参数为 θ i , i = 1 , . . . , N \theta_i,i=1,...,N θi,i=1,...,N,表示为方位角(azimuth angle),其中方位角表示与 y y y轴的夹角(即与线阵防线的夹角),则有:
τ k i = 1 c ( x k sin ⁡ θ i ) . \tau_{ki}=\frac{1}{c} (x_k \sin \theta_i). τki=c1(xksinθi).

空间频率

表示成空间频率(Spatial Frequency)为:

Φ ˉ X ≜ sin ⁡ ( ϕ R ( q ) ) cos ⁡ ( η R ( q ) ) = q x ∣ ∣ q ˉ ∣ ∣ , Φ ˉ Y ≜ sin ⁡ ( ϕ R ( q ) ) sin ⁡ ( η R ( q ) ) = q y ∣ ∣ q ˉ ∣ ∣ , \bar{\Phi}_X \triangleq \sin(\phi_R(\mathbf{q}))\cos(\eta_R(\mathbf{q})) = \frac{q_x}{||\bar{\mathbf{q}}||},\\ \bar{\Phi}_Y \triangleq \sin(\phi_R(\mathbf{q}))\sin(\eta_R(\mathbf{q})) = \frac{q_y}{||\bar{\mathbf{q}}||}, ΦˉXsin(ϕR(q))cos(ηR(q))=qˉqx,ΦˉYsin(ϕR(q))sin(ηR(q))=qˉqy,其中以IRS的坐标 q ˉ = [ p x , p y , p z ] T \bar{\mathbf{q}}=[p_x,p_y,p_z]^T qˉ=[px,py,pz]T为参考点。

阵列方向图

阵列输出绝对值来波方向/到达角(AOA)之间的关系称为天线的方向图(Pattern)。
方向图一般分成两类:1)阵列输出的累加(不考虑信号及来向),即静态方向图;2)带指向的方向图(考虑信号指向),其中信号的指向是通过控制加权相位实现。
对于某一确定的 元空 间阵列,在忽略噪声的条件下,第 l l l个阵元的复振幅为:
x l = g 0 e − ȷ w τ l , l = 1 , . . . , m , x_l = g_0 e^{-\jmath w \tau_{l}}, l =1,...,m, xl=g0eȷwτl,l=1,...,m,
式中 g 0 g_0 g0为来波的复振幅, τ l \tau_l τl为第 l l l个阵元与参考点之间的延迟。设第 l l l个阵元的权值为 w l w_l wl,那么所有阵元加权的输出为:
Y 0 = ∑ l = 1 m w l g 0 e − ȷ w τ l , l = 1 , . . . , m ( 2.4.2 ) Y_0 = \sum_{l=1}^{m} w_l g_0 e^{-\jmath w \tau_l}, l = 1,...,m \qquad (2.4.2) Y0=l=1mwlg0eȷwτl,l=1,...,m(2.4.2)
对上式取绝对值并归一化后可得到空间阵列的方向图 G ( θ ) G(\theta) G(θ)
G ( θ ) = Y 0 max ⁡ { ∣ Y 0 ∣ } , ( 2.4.3 ) G(\theta) = \frac{Y_0}{\max\{|Y_0|\}}, \qquad (2.4.3) G(θ)=max{Y0}Y0,(2.4.3) 如果式中$w_l = 1,l=1,2…,m, $ , 则 上 式 为 静 态 方 向 图 ,则上式为静态方向图 G_0(\theta)$。
线面我们将针对阵列的类型分开讨论。

1. 均匀线阵(Uniform Linear Array)

假设均匀线阵的问距为 d d d,且以最左边的阵元为参考点(原点),另假设信号入射方位角为 θ \theta θ,其中方位角表示与线阵法线方向的夹角,则阵元之间的波程差

τ = 1 c ( x k sin ⁡ θ ) = 1 c ( l − 1 ) ( d sin ⁡ θ ) ( 2.4.4 ) \tau = \frac{1}{c} (x_k \sin \theta) = \frac{1}{c} (l-1) (d \sin \theta) \qquad (2.4.4) τ=c1(xksinθ)=c1(l1)(dsinθ)(2.4.4)
则式(2.4.2)可简化成: Y 0 = ∑ l = 1 m w l g 0 e − ȷ w τ l = ∑ l = 1 m w l g 0 e − ȷ 2 π λ ( l − 1 ) d sin ⁡ θ = ∑ l = 1 m w l g 0 e − ȷ ( l − 1 ) β Y_0 = \sum_{l=1}^{m} w_l g_0 e^{-\jmath w \tau_l} = \sum_{l=1}^{m} w_l g_0 e^{-\jmath \frac{2\pi}{\lambda}(l-1)d\sin \theta} = \sum_{l=1}^{m} w_l g_0 e^{-\jmath(l-1) \beta} Y0=l=1mwlg0eȷwτl=l=1mwlg0eȷλ2π(l1)dsinθ=l=1mwlg0eȷ(l1)β 其中 β = 2 π d sin ⁡ θ λ \beta = \frac{2 \pi d \sin \theta}{\lambda} β=λ2πdsinθ λ \lambda λ为入射信号的波长。
当上式 w l = 1 , l = 1 , 2 , . . . , m w_l = 1, l = 1,2,...,m wl=1,l=1,2,...,m时,可进一步简化为
Y 0 = m g 0 e ȷ ( m − l ) β / 2 sin ⁡ ( m β / 2 ) m sin ⁡ ( β / 2 ) ( 2.4.5 ) Y_0 = m g_0 e^{\jmath (m-l)\beta/2} \frac{\sin (m\beta / 2)}{m \sin (\beta /2)} \qquad (2.4.5) Y0=mg0eȷ(ml)β/2msin(β/2)sin(mβ/2)(2.4.5)
由上式可得ULA的静态方向图:
G 0 ( θ ) = ∣ sin ⁡ ( m β / 2 ) m sin ⁡ ( β / 2 ) ∣ G_0(\theta)= \left| \frac{\sin(m\beta /2)}{m \sin(\beta /2)} \right| G0(θ)=msin(β/2)sin(mβ/2)
当式(2.4.5)中的 w l = e ȷ ( l − 1 ) β d w_l = e^{\jmath (l-1) \beta_d} wl=eȷ(l1)βd, β d = 2 π d sin ⁡ θ d λ , l = 1 , . . . , m \beta_d = \frac{2 \pi d \sin \theta_d}{\lambda}, l =1,...,m βd=λ2πdsinθd,l=1,...,m时,可简化为:
Y 0 = m g 0 e ȷ ( m − 1 ) ( β − β d ) 2 sin ⁡ [ m ( β − β d ) / 2 ] m sin ⁡ [ ( β − β d ) / 2 ] . Y_0 = m g_0 e^{\jmath \frac{(m-1)(\beta - \beta_d)}{2} } \frac{\sin [m(\beta-\beta_d)/2]}{m \sin [(\beta-\beta_d)/2]}. Y0=mg0eȷ2(m1)(ββd)msin[(ββd)/2]sin[m(ββd)/2].

如下,图2.4.1(a)为静态方向图,图2.4.1(b)为指向为 3 0 o 30^o 30o的方向图,另外加了旁瓣电平为 − 30 d B -30\rm{dB} 30dB的切比雪夫权。

2. 平面阵列(Uniform Plane Array)

假定这个平面阵是矩阵阵列,维度为 m × n m\times n m×n个阵元组成,几何关系如下图。
定义:以左上角的阵元为参考点, x x x轴上有 n n n个间隔 d d d的均匀线阵, θ \theta θ φ \varphi φ分别为方位角和俯仰角。

  • 当竖面放置阵列(图a),信号入射到第 k k k个阵元上引起的与参考阵元间的时延为:
    τ = 1 c ( x k cos ⁡ θ cos ⁡ φ + y k sin ⁡ θ cos ⁡ φ ) \tau = \frac{1}{c} (x_k \cos \theta \cos \varphi + y_k \sin \theta \cos \varphi ) τ=c1(xkcosθcosφ+yksinθcosφ)

  • 当竖面放置阵列(图b)和 y = 0 y=0 y=0,信号入射到第 k k k个阵元上引起的与参考阵元间的时延为:
    τ = 1 c ( x k cos ⁡ θ cos ⁡ φ + z k sin ⁡ φ ) \tau = \frac{1}{c} (x_k \cos \theta \cos \varphi + z_k \sin \varphi) τ=c1(xkcosθcosφ+zksinφ)

  • 因此,当 w i = 1 , g 0 = 1 w_i = 1,g_0 = 1 wi=1,g0=1时,水平面放置的平面阵的方向图:
    G ( θ ) = ∑ i = 1 m e − ȷ 2 π λ ( x i cos ⁡ θ cos ⁡ φ + y i sin ⁡ θ cos ⁡ φ ) = ∑ i = 1 m ∑ k = 1 n e − ȷ 2 π d λ ( ( i − 1 ) cos ⁡ θ cos ⁡ φ + ( k − 1 ) sin ⁡ θ cos ⁡ φ ) = ∑ i = 1 m e − ȷ 2 π d λ ( ( i − 1 ) cos ⁡ θ cos ⁡ φ ) ∑ k = 1 n e − ȷ 2 π d λ ( ( k − 1 ) sin ⁡ θ cos ⁡ φ ) = G r o w ( θ ) G c o l ( θ ) \begin{array}{ll} G(\theta) & = \sum_{i=1}^{m} e^{-\jmath \frac{2\pi}{\lambda} (x_i\cos \theta \cos \varphi + y_i \sin \theta \cos \varphi) } \\ &= \sum_{i=1}^{m} \sum_{k=1}^{n} e^{-\jmath \frac{2\pi d }{\lambda} ((i-1)\cos \theta \cos \varphi + (k-1) \sin \theta \cos \varphi) } \\ &= \sum_{i=1}^{m} e^{-\jmath \frac{2\pi d}{\lambda} ((i-1) \cos \theta \cos \varphi) } \sum_{k=1}^{n} e^{-\jmath \frac{2\pi d}{\lambda} ((k-1) \sin \theta \cos \varphi) }\\ &=G_{row} (\theta)G_{col} (\theta) \end{array} G(θ)=i=1meȷλ2π(xicosθcosφ+yisinθcosφ)=i=1mk=1neȷλ2πd((i1)cosθcosφ+(k1)sinθcosφ)=i=1meȷλ2πd((i1)cosθcosφ)k=1neȷλ2πd((k1)sinθcosφ)=Grow(θ)Gcol(θ)
    即平面阵的方向图相当于合成行子阵(平行与 x x x方向)方向图 G r o w ( θ ) G_{row}(\theta) Grow(θ)与合成列子阵(平行于 y y y方向)方向图 G c o l ( θ ) G_{col}(\theta) Gcol(θ)乘积

  • 因此,当 w i = 1 , g 0 = 1 w_i = 1,g_0 = 1 wi=1,g0=1时,竖面放置的平面阵的方向图:
    G ( θ ) = ∑ i = 1 m e − ȷ 2 π λ ( x i cos ⁡ θ cos ⁡ φ + z i sin ⁡ φ ) = ∑ i = 1 m ∑ k = 1 n e − ȷ 2 π d λ ( ( i − 1 ) cos ⁡ θ cos ⁡ φ + ( k − 1 ) sin ⁡ φ ) = ∑ i = 1 m e − ȷ 2 π d λ ( ( i − 1 ) cos ⁡ θ cos ⁡ φ ) ∑ k = 1 n e − ȷ 2 π d λ ( ( k − 1 ) sin ⁡ φ ) = G r o w ( θ ) G c o l ( θ ) \begin{array}{ll} G(\theta) & = \sum_{i=1}^{m} e^{-\jmath \frac{2\pi}{\lambda} (x_i\cos \theta \cos \varphi + z_i \sin \varphi) } \\ &= \sum_{i=1}^{m} \sum_{k=1}^{n} e^{-\jmath \frac{2\pi d }{\lambda} ((i-1)\cos \theta \cos \varphi + (k-1) \sin \varphi) } \\ &= \sum_{i=1}^{m} e^{-\jmath \frac{2\pi d}{\lambda} ((i-1) \cos \theta \cos \varphi) } \sum_{k=1}^{n} e^{-\jmath \frac{2\pi d}{\lambda} ((k-1) \sin \varphi) }\\ &=G_{row} (\theta)G_{col} (\theta) \end{array} G(θ)=i=1meȷλ2π(xicosθcosφ+zisinφ)=i=1mk=1neȷλ2πd((i1)cosθcosφ+(k1)sinφ)=i=1meȷλ2πd((i1)cosθcosφ)k=1neȷλ2πd((k1)sinφ)=Grow(θ)Gcol(θ) 即平面阵的方向图相当于合成行子阵(平行与 x x x方向)方向图 G r o w ( θ ) G_{row}(\theta) Grow(θ)与合成列子阵(平行于 z z z方向)方向图 G c o l ( θ ) G_{col}(\theta) Gcol(θ)乘积

  • 4
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
阵列天线方向是指阵列天线对不同方向上的信号的接收或辐射效果。均匀直线/平面阵列是一种常用的阵列配置类型,可以提供更强的方向性和增益。 在Matlab中进行均匀直线/平面阵列的仿真,可以遵循以下步骤: 1. 定义天线元素:首先,根据具体要求定义单个天线元素的模型。这包括天线的几何形状、辐射模式和阻抗等参数。 2. 构建阵列:根据均匀直线/平面阵列的要求,在Matlab中通过创建多个天线元素的副本来构建阵列。可以使用循环或矩阵操作来自动生成多个天线元素。 3. 实现阵列辐射或接收模式:通过设定天线元素的相位差和振幅加权系数,实现阵列的辐射或接收模式。可以根据需要设定方向波束、旁瓣抑制和增益等参数。 4. 计算方向:根据给定的参数和阵列模式,使用Matlab中的信号处理工具箱或自编函数计算阵列方向方向将显示不同方向上的信号接收或辐射效果,可通过绘函数将其可视化。 5. 仿真分析:对生成的方向进行分析和评估。可以通过改变阵列参数,比如天线间距、阵列尺寸或工作频率,来研究阵列性能。 在仿真过程中,可以使用Matlab中的Phased Array System Toolbox来简化阵列模型的构建和方向计算,提高仿真效率。 总而言之,通过在Matlab中进行均匀直线/平面阵列的仿真,可以方便地研究和优化阵列天线的方向性和性能,为实际应用提供参考和指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值