该基础知识笔记来源于空间谱估计理论与算法(王永亮…等)。
波程差

两个阵元间的波程差为:
τ
=
1
c
(
x
cos
θ
cos
φ
+
y
sin
θ
cos
φ
+
z
sin
φ
)
,
\tau=\frac{1}{c}(x \cos \theta \cos \varphi+y \sin \theta \cos \varphi+z \sin \varphi),
τ=c1(xcosθcosφ+ysinθcosφ+zsinφ), 其中
c
c
c为光速。
1. 平面阵
设阵元的位置为
(
x
k
,
y
k
)
,
k
=
1
,
.
.
.
,
M
(x_k,y_k),k=1,...,M
(xk,yk),k=1,...,M,以原点为参考点,另假设信号入射参数为
(
θ
i
,
φ
i
)
,
i
=
1
,
.
.
.
,
N
(\theta_i,\varphi_i),i=1,...,N
(θi,φi),i=1,...,N,分别为方位角(azimuth angle)和俯仰角(zenith angle),其中方位角表示与
x
x
x轴的夹角,则有:
τ
k
i
=
1
c
(
x
k
cos
θ
i
cos
φ
i
+
y
k
sin
θ
i
cos
φ
i
)
.
\tau_{ki}=\frac{1}{c}(x_k \cos \theta_i \cos \varphi_i+y_k \sin \theta_i \cos \varphi_i).
τki=c1(xkcosθicosφi+yksinθicosφi).
2. 线阵
设阵元的位置为
x
k
,
k
=
1
,
.
.
.
,
M
x_k,k=1,...,M
xk,k=1,...,M,以原点为参考点,另假设信号入射参数为
θ
i
,
i
=
1
,
.
.
.
,
N
\theta_i,i=1,...,N
θi,i=1,...,N,表示为方位角(azimuth angle),其中方位角表示与
y
y
y轴的夹角(即与线阵防线的夹角),则有:
τ
k
i
=
1
c
(
x
k
sin
θ
i
)
.
\tau_{ki}=\frac{1}{c} (x_k \sin \theta_i).
τki=c1(xksinθi).
空间频率

Φ ˉ X ≜ sin ( ϕ R ( q ) ) cos ( η R ( q ) ) = q x ∣ ∣ q ˉ ∣ ∣ , Φ ˉ Y ≜ sin ( ϕ R ( q ) ) sin ( η R ( q ) ) = q y ∣ ∣ q ˉ ∣ ∣ , \bar{\Phi}_X \triangleq \sin(\phi_R(\mathbf{q}))\cos(\eta_R(\mathbf{q})) = \frac{q_x}{||\bar{\mathbf{q}}||},\\ \bar{\Phi}_Y \triangleq \sin(\phi_R(\mathbf{q}))\sin(\eta_R(\mathbf{q})) = \frac{q_y}{||\bar{\mathbf{q}}||}, ΦˉX≜sin(ϕR(q))cos(ηR(q))=∣∣qˉ∣∣qx,ΦˉY≜sin(ϕR(q))sin(ηR(q))=∣∣qˉ∣∣qy,其中以IRS的坐标 q ˉ = [ p x , p y , p z ] T \bar{\mathbf{q}}=[p_x,p_y,p_z]^T qˉ=[px,py,pz]T为参考点。
阵列方向图
阵列输出的绝对值与来波方向/到达角(AOA)之间的关系称为天线的方向图(Pattern)。
方向图一般分成两类:1)阵列输出的累加(不考虑信号及来向),即静态方向图;2)带指向的方向图(考虑信号指向),其中信号的指向是通过控制加权相位实现。
对于某一确定的 元空 间阵列,在忽略噪声的条件下,第
l
l
l个阵元的复振幅为:
x
l
=
g
0
e
−
ȷ
w
τ
l
,
l
=
1
,
.
.
.
,
m
,
x_l = g_0 e^{-\jmath w \tau_{l}}, l =1,...,m,
xl=g0e−ȷwτl,l=1,...,m,
式中
g
0
g_0
g0为来波的复振幅,
τ
l
\tau_l
τl为第
l
l
l个阵元与参考点之间的延迟。设第
l
l
l个阵元的权值为
w
l
w_l
wl,那么所有阵元加权的输出为:
Y
0
=
∑
l
=
1
m
w
l
g
0
e
−
ȷ
w
τ
l
,
l
=
1
,
.
.
.
,
m
(
2.4.2
)
Y_0 = \sum_{l=1}^{m} w_l g_0 e^{-\jmath w \tau_l}, l = 1,...,m \qquad (2.4.2)
Y0=l=1∑mwlg0e−ȷwτl,l=1,...,m(2.4.2)
对上式取绝对值并归一化后可得到空间阵列的方向图
G
(
θ
)
G(\theta)
G(θ)为
G
(
θ
)
=
Y
0
max
{
∣
Y
0
∣
}
,
(
2.4.3
)
G(\theta) = \frac{Y_0}{\max\{|Y_0|\}}, \qquad (2.4.3)
G(θ)=max{∣Y0∣}Y0,(2.4.3) 如果式中$w_l = 1,l=1,2…,m, $
,
则
上
式
为
静
态
方
向
图
,则上式为静态方向图
,则上式为静态方向图G_0(\theta)$。
线面我们将针对阵列的类型分开讨论。
1. 均匀线阵(Uniform Linear Array)
假设均匀线阵的问距为 d d d,且以最左边的阵元为参考点(原点),另假设信号入射方位角为 θ \theta θ,其中方位角表示与线阵法线方向的夹角,则阵元之间的波程差
τ
=
1
c
(
x
k
sin
θ
)
=
1
c
(
l
−
1
)
(
d
sin
θ
)
(
2.4.4
)
\tau = \frac{1}{c} (x_k \sin \theta) = \frac{1}{c} (l-1) (d \sin \theta) \qquad (2.4.4)
τ=c1(xksinθ)=c1(l−1)(dsinθ)(2.4.4)
则式(2.4.2)可简化成:
Y
0
=
∑
l
=
1
m
w
l
g
0
e
−
ȷ
w
τ
l
=
∑
l
=
1
m
w
l
g
0
e
−
ȷ
2
π
λ
(
l
−
1
)
d
sin
θ
=
∑
l
=
1
m
w
l
g
0
e
−
ȷ
(
l
−
1
)
β
Y_0 = \sum_{l=1}^{m} w_l g_0 e^{-\jmath w \tau_l} = \sum_{l=1}^{m} w_l g_0 e^{-\jmath \frac{2\pi}{\lambda}(l-1)d\sin \theta} = \sum_{l=1}^{m} w_l g_0 e^{-\jmath(l-1) \beta}
Y0=l=1∑mwlg0e−ȷwτl=l=1∑mwlg0e−ȷλ2π(l−1)dsinθ=l=1∑mwlg0e−ȷ(l−1)β 其中
β
=
2
π
d
sin
θ
λ
\beta = \frac{2 \pi d \sin \theta}{\lambda}
β=λ2πdsinθ,
λ
\lambda
λ为入射信号的波长。
当上式
w
l
=
1
,
l
=
1
,
2
,
.
.
.
,
m
w_l = 1, l = 1,2,...,m
wl=1,l=1,2,...,m时,可进一步简化为
Y
0
=
m
g
0
e
ȷ
(
m
−
l
)
β
/
2
sin
(
m
β
/
2
)
m
sin
(
β
/
2
)
(
2.4.5
)
Y_0 = m g_0 e^{\jmath (m-l)\beta/2} \frac{\sin (m\beta / 2)}{m \sin (\beta /2)} \qquad (2.4.5)
Y0=mg0eȷ(m−l)β/2msin(β/2)sin(mβ/2)(2.4.5)
由上式可得ULA的静态方向图:
G
0
(
θ
)
=
∣
sin
(
m
β
/
2
)
m
sin
(
β
/
2
)
∣
G_0(\theta)= \left| \frac{\sin(m\beta /2)}{m \sin(\beta /2)} \right|
G0(θ)=∣∣∣∣msin(β/2)sin(mβ/2)∣∣∣∣
当式(2.4.5)中的
w
l
=
e
ȷ
(
l
−
1
)
β
d
w_l = e^{\jmath (l-1) \beta_d}
wl=eȷ(l−1)βd,
β
d
=
2
π
d
sin
θ
d
λ
,
l
=
1
,
.
.
.
,
m
\beta_d = \frac{2 \pi d \sin \theta_d}{\lambda}, l =1,...,m
βd=λ2πdsinθd,l=1,...,m时,可简化为:
Y
0
=
m
g
0
e
ȷ
(
m
−
1
)
(
β
−
β
d
)
2
sin
[
m
(
β
−
β
d
)
/
2
]
m
sin
[
(
β
−
β
d
)
/
2
]
.
Y_0 = m g_0 e^{\jmath \frac{(m-1)(\beta - \beta_d)}{2} } \frac{\sin [m(\beta-\beta_d)/2]}{m \sin [(\beta-\beta_d)/2]}.
Y0=mg0eȷ2(m−1)(β−βd)msin[(β−βd)/2]sin[m(β−βd)/2].
如下,图2.4.1(a)为静态方向图,图2.4.1(b)为指向为 3 0 o 30^o 30o的方向图,另外加了旁瓣电平为 − 30 d B -30\rm{dB} −30dB的切比雪夫权。

2. 平面阵列(Uniform Plane Array)
假定这个平面阵是矩阵阵列,维度为
m
×
n
m\times n
m×n个阵元组成,几何关系如下图。
定义:以左上角的阵元为参考点,
x
x
x轴上有
n
n
n个间隔
d
d
d的均匀线阵,
θ
\theta
θ和
φ
\varphi
φ分别为方位角和俯仰角。
-
当竖面放置阵列(图a),信号入射到第 k k k个阵元上引起的与参考阵元间的时延为:
τ = 1 c ( x k cos θ cos φ + y k sin θ cos φ ) \tau = \frac{1}{c} (x_k \cos \theta \cos \varphi + y_k \sin \theta \cos \varphi ) τ=c1(xkcosθcosφ+yksinθcosφ) -
当竖面放置阵列(图b)和 y = 0 y=0 y=0,信号入射到第 k k k个阵元上引起的与参考阵元间的时延为:
τ = 1 c ( x k cos θ cos φ + z k sin φ ) \tau = \frac{1}{c} (x_k \cos \theta \cos \varphi + z_k \sin \varphi) τ=c1(xkcosθcosφ+zksinφ) -
因此,当 w i = 1 , g 0 = 1 w_i = 1,g_0 = 1 wi=1,g0=1时,水平面放置的平面阵的方向图:
G ( θ ) = ∑ i = 1 m e − ȷ 2 π λ ( x i cos θ cos φ + y i sin θ cos φ ) = ∑ i = 1 m ∑ k = 1 n e − ȷ 2 π d λ ( ( i − 1 ) cos θ cos φ + ( k − 1 ) sin θ cos φ ) = ∑ i = 1 m e − ȷ 2 π d λ ( ( i − 1 ) cos θ cos φ ) ∑ k = 1 n e − ȷ 2 π d λ ( ( k − 1 ) sin θ cos φ ) = G r o w ( θ ) G c o l ( θ ) \begin{array}{ll} G(\theta) & = \sum_{i=1}^{m} e^{-\jmath \frac{2\pi}{\lambda} (x_i\cos \theta \cos \varphi + y_i \sin \theta \cos \varphi) } \\ &= \sum_{i=1}^{m} \sum_{k=1}^{n} e^{-\jmath \frac{2\pi d }{\lambda} ((i-1)\cos \theta \cos \varphi + (k-1) \sin \theta \cos \varphi) } \\ &= \sum_{i=1}^{m} e^{-\jmath \frac{2\pi d}{\lambda} ((i-1) \cos \theta \cos \varphi) } \sum_{k=1}^{n} e^{-\jmath \frac{2\pi d}{\lambda} ((k-1) \sin \theta \cos \varphi) }\\ &=G_{row} (\theta)G_{col} (\theta) \end{array} G(θ)=∑i=1me−ȷλ2π(xicosθcosφ+yisinθcosφ)=∑i=1m∑k=1ne−ȷλ2πd((i−1)cosθcosφ+(k−1)sinθcosφ)=∑i=1me−ȷλ2πd((i−1)cosθcosφ)∑k=1ne−ȷλ2πd((k−1)sinθcosφ)=Grow(θ)Gcol(θ)
即平面阵的方向图相当于合成行子阵(平行与 x x x方向)方向图 G r o w ( θ ) G_{row}(\theta) Grow(θ)与合成列子阵(平行于 y y y方向)方向图 G c o l ( θ ) G_{col}(\theta) Gcol(θ)的乘积。 -
因此,当 w i = 1 , g 0 = 1 w_i = 1,g_0 = 1 wi=1,g0=1时,竖面放置的平面阵的方向图:
G ( θ ) = ∑ i = 1 m e − ȷ 2 π λ ( x i cos θ cos φ + z i sin φ ) = ∑ i = 1 m ∑ k = 1 n e − ȷ 2 π d λ ( ( i − 1 ) cos θ cos φ + ( k − 1 ) sin φ ) = ∑ i = 1 m e − ȷ 2 π d λ ( ( i − 1 ) cos θ cos φ ) ∑ k = 1 n e − ȷ 2 π d λ ( ( k − 1 ) sin φ ) = G r o w ( θ ) G c o l ( θ ) \begin{array}{ll} G(\theta) & = \sum_{i=1}^{m} e^{-\jmath \frac{2\pi}{\lambda} (x_i\cos \theta \cos \varphi + z_i \sin \varphi) } \\ &= \sum_{i=1}^{m} \sum_{k=1}^{n} e^{-\jmath \frac{2\pi d }{\lambda} ((i-1)\cos \theta \cos \varphi + (k-1) \sin \varphi) } \\ &= \sum_{i=1}^{m} e^{-\jmath \frac{2\pi d}{\lambda} ((i-1) \cos \theta \cos \varphi) } \sum_{k=1}^{n} e^{-\jmath \frac{2\pi d}{\lambda} ((k-1) \sin \varphi) }\\ &=G_{row} (\theta)G_{col} (\theta) \end{array} G(θ)=∑i=1me−ȷλ2π(xicosθcosφ+zisinφ)=∑i=1m∑k=1ne−ȷλ2πd((i−1)cosθcosφ+(k−1)sinφ)=∑i=1me−ȷλ2πd((i−1)cosθcosφ)∑k=1ne−ȷλ2πd((k−1)sinφ)=Grow(θ)Gcol(θ) 即平面阵的方向图相当于合成行子阵(平行与 x x x方向)方向图 G r o w ( θ ) G_{row}(\theta) Grow(θ)与合成列子阵(平行于 z z z方向)方向图 G c o l ( θ ) G_{col}(\theta) Gcol(θ)的乘积。
