均值、均方值、方差、均方差和协方差概念及其物理意义

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

1.均值(Mean)

A. Definition

Successive Type

The mean of Random Vriable x \bm{x} x is
E ( x ) = ∫ − ∞ ∞ x f ( x ) d x . E(\bm{x}) = \int_{-\infty}^{\infty} x f(x) \text{d}x. E(x)=xf(x)dx.

Discrete Type

Letting random variable x x x with x i x_i xi having p i p_i pi, we have
f ( x ) = ∑ i p i δ ( x − x i ) . f(x) =\sum_i p_i \delta (x - x_i). f(x)=ipiδ(xxi). Substituting identical eqution ∫ − ∞ ∞ x δ ( x − x i ) d x = x i \int_{-\infty}^{\infty} x \delta (x-x_i) \text{d} x = x_i xδ(xxi)dx=xi into the above equation, we have
E ( x ) = ∑ i p i x i , p i = P ( x = x i ) . E(x) = \sum_i p_i x_i, p_i =P(\bm{x} = x_i). E(x)=ipixi,pi=P(x=xi).

Conditional Mean

Let Conditional Probability Density (CPD) replace PDF f ( x ) f(x) f(x), the conditional mean of random variable x \bm{x} x with condition M is
E ( x ∣ M ) = ∫ − ∞ ∞ x f ( x ∣ M ) d x E(\bm{x} | M) = \int_{-\infty}^{\infty} x f(x|M) \text{d}x E(xM)=xf(xM)dx
For discrete random variable, the above equation is rewritten as E ( x ∣ M ) = ∑ i x i P ( x = x i ∣ M ) . E(\bm{x} | M) = \sum_i x_i P(\bm{x} = x_i|M). E(xM)=ixiP(x=xiM).

B. Property

Mean can express the magnitude of direct current, denoted as E ( x ) E(x) E(x).
For a Gaussian white noise signal, its mean is zero, and it only has alternating components.

Note that the square mean, E ( x ) 2 {E(x)}^2 E(x)2, can express the power of direct components.


2. 均方值(Mean Square Value)

Mean Square Value can express the mean power of a signal, E ( x 2 ) E(x^2) E(x2).
Mean power of a signal = Component of alternating current + Component of direct current


3. 方差(variance)

A. Definition

It can be expressed as variance or deviation or Var.

1)Successive Type

D ( X ) = σ 2 = ∫ − ∞ ∞ ( x − μ ) 2 f ( x ) d x D(X) = \sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) \text{d} x D(X)=σ2=(xμ)2f(x)dx where μ = E ( X ) \mu=E(X) μ=E(X).
The above equation can be rewritten as D ( X ) = ∫ x 2 f ( x ) d x − μ 2 = E ( X 2 ) − [ E ( X ) ] 2 . D(X)=\int x^{2} f(x) d x-\mu^{2}=E\left(X^{2}\right)-[E(X)]^{2}. D(X)=x2f(x)dxμ2=E(X2)[E(X)]2.

2)Discrete Type

D ( X ) = ∑ i = 1 N p i ( x i − μ ) 2 = ∑ i = 1 N ( p i x i 2 ) − μ 2 . D(X) = \sum_{i=1}^N p_i (x_i-\mu)^2 = \sum_{i=1}^N (p_i x_i^2) -\mu^2. D(X)=i=1Npi(xiμ)2=i=1N(pixi2)μ2.

In probability theory, variance can measure the deviation extent between random variables and mean.

Variance can describe the deviation extent of a signal and express the strength of alternating components, i.e., mean power of an alternating signal.

B. Property

  • Letting C C C be a constant, we have D ( C ) = 0 D(C) = 0 D(C)=0.
  • Letting X X X be a random variable, we have D ( C X ) = C 2 D ( X ) D(CX) = C^2 D(X) D(CX)=C2D(X), D ( X + C ) = D ( X ) D(X+C) = D(X) D(X+C)=D(X).
  • Letting X , Y X,Y X,Y be random variables, we have D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) D(X \pm Y) = D(X)+D(Y) \pm 2 Cov(X,Y) D(X±Y)=D(X)+D(Y)±2Cov(X,Y), where C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov (X,Y)=E\{[X-E(X)][Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]} .

4. 标准差 (Standard Variance)

Standard Deviation is also called Root-Mean-Square Error (RMSE), denoted as σ \sigma σ, which can reflect the discrete degree of a dataset.

Note that Standard Variance can reflect the discrete degree between measuring data and true data, which can be a metric. The smaller the Standard Variance, the higher the accuracy.


5. 协方差 (Covariance)

In statistics and probability theory, Covariance can measure the total error between two variables.

C o v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] = E [ X Y ] − 2 E [ X ] E [ Y ] + E [ X ] E [ Y ] = E [ X Y ] − E [ X ] E [ Y ] \begin{array}{ll} Cov(X,Y) &= E \left[ (X-E(X)) (Y-E(Y)) \right]\\ &= E\left[ XY \right] - 2E[X]E[Y] + E[X]E[Y] \\ &=E\left[ XY \right] - E[X]E[Y] \end{array} Cov(X,Y)=E[(XE(X))(YE(Y))]=E[XY]2E[X]E[Y]+E[X]E[Y]=E[XY]E[X]E[Y]

A. Meaning

Case 1:
如果两个变量的变化趋势一致,如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值
Case 2:
如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。即协方差具备描述X和Y相关程度的量的功能。

如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足 E [ X Y ] = E [ X ] E [ Y ] E[XY]=E[X]E[Y] E[XY]=E[X]E[Y]。但是,反过来并不成立。

若两个随机变量X和Y相互独立,则 E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] = 0 E[(X-E(X))(Y-E(Y))]=0 E[(XE(X))(YE(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。

B. The relationship between Variance and Covariance

D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) D(X+Y)=D(X)+D(Y)+2Cov(X,Y) D(X+Y)=D(X)+D(Y)+2Cov(XY) D ( X − Y ) = D ( X ) + D ( Y ) − 2 C o v ( X , Y ) D(X-Y)=D(X)+D(Y)-2Cov(X,Y) D(XY)=D(X)+D(Y)2Cov(XY)

协方差与期望值有如下关系:
C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(XY)=E(XY)E(X)E(Y)

C. 协方差的性质
  • C o v ( X , Y ) = C o v ( Y , X ) Cov(X, Y)=Cov(Y, X) Cov(X,Y)=Cov(Y,X)

  • C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX, bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y),( a a a and b b b are constant);

  • C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2, Y)=Cov(X_1, Y)+Cov(X_2, Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

D. 相关系数

相关系数是作为描述两者变量的相关程度的量。

ρ X Y = Cov ⁡ ( X , Y ) D ( X ) D ( Y ) \rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}} ρXY=D(X) D(Y) Cov(X,Y)

性质
设ρXY是随机变量X和Y的相关系数,则有

(1) ∣ ρ X Y ∣ ≤ 1 ∣\rho_{XY}∣ \leq 1 ρXY1

(2) ∣ ρ X Y ∣ = 1 ∣\rho_{XY}∣ = 1 ρXY=1充分必要条件为 P { Y = a X + b } = 1 P\{Y=aX+b\}=1 P{Y=aX+b}=1,( a a a and b b b为常数, a ≠ 0 a \neq 0 a=0);

(3)若 ρ X Y = 0 \rho_{XY}=0 ρXY=0,则称X与Y不线性相关。


  • 12
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值