由最简单的线性回归出发

由最简单的线性回归出发

一、什么是线性回归?
线性回归是用线性累加的函数h(x),其中函数包含m+1个w(w从0~m)参数,函数为了拟合样本(X,Y)中X->Y的转换关系,其中X为m维,Y为1维线性回归详解

二、线性回归的目标。
Loss Function为最小二乘法的函数,目的为了找到使得Loss Function最小的W。
最小二乘法

三、达到目标的做法。
求线性回归的W的一般做法一般分为两种情况,矩阵XTX满秩序可求解(求导等于0),与矩阵XTX不满秩(梯度下降)。
J与L含义相同

具体求法在上述链接中,这里来回顾一下:
1.什么是矩阵的秩?
(1)矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。

  • 线性独立: 矩阵中的一个向量不能由其他向量表示。

2.怎么求矩阵的秩?
(1)初等变换,高斯消元。化为梯形矩阵的行数。

3.什么是矩阵满秩?
(1)设A是n阶矩阵, 若r(A) = n, 则称A为满秩矩阵。但满秩不局限于n阶矩阵
回到原来的线性回归问题,若满秩矩阵是一个很重要的概念, 它是判断一个矩阵是否可逆的充分必要条件。

A. 若矩阵XTX为满秩矩阵,直接求解。
满秩说明可求逆——> L对W求导等于零可以直接求解W:
在这里插入图片描述

B. 若矩阵XTX为不满秩,梯度下降,求局部最小值。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值