由最简单的线性回归出发
一、什么是线性回归?
线性回归是用线性累加的函数h(x),其中函数包含m+1个w(w从0~m)参数,函数为了拟合样本(X,Y)中X->Y的转换关系,其中X为m维,Y为1维线性回归详解
二、线性回归的目标。
Loss Function为最小二乘法的函数,目的为了找到使得Loss Function最小的W。
三、达到目标的做法。
求线性回归的W的一般做法一般分为两种情况,矩阵XTX满秩序可求解(求导等于0),与矩阵XTX不满秩(梯度下降)。
具体求法在上述链接中,这里来回顾一下:
1.什么是矩阵的秩?
(1)矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。
- 线性独立: 矩阵中的一个向量不能由其他向量表示。
2.怎么求矩阵的秩?
(1)初等变换,高斯消元。化为梯形矩阵的行数。
3.什么是矩阵满秩?
(1)设A是n阶矩阵, 若r(A) = n, 则称A为满秩矩阵。但满秩不局限于n阶矩阵
回到原来的线性回归问题,若满秩矩阵是一个很重要的概念, 它是判断一个矩阵是否可逆的充分必要条件。
A. 若矩阵XTX为满秩矩阵,直接求解。
满秩说明可求逆——> L对W求导等于零可以直接求解W:
B. 若矩阵XTX为不满秩,梯度下降,求局部最小值。