写在前面
最近开始更新一个新的系列科研绘图,在同一个竞赛下,大家都近乎相同的解题思路下。之所以能出现一等二等三等奖的区别很大部分都在于结果的可视化,为了能更好地帮助大家进行可视化,近期将专门推出一个可视化板块,推出各种好看实用的可视化图形。
山脊图
也称为Joy Plot。它是一种数据可视化的方法,用于展示一个或多个组的数据分布。在山脊图中,每个组的数据分布通过平滑的密度曲线表示,这些曲线沿垂直轴堆叠排列,从而产生类似山脊的视觉效果。这种图表尤其适用于比较不同组的数据分布情况。
山脊图的制作基于核密度估计(Kernel Density Estimation, KDE),这是一种估计概率密度函数的非参数方式。与传统的条形图或直方图相比,山脊图提供了一种更平滑、更直观的方式来展示数据的分布情况。它特别适合于展示大量组的数据分布,可以帮助观察者理解不同组之间的差异和相似之处。
山脊图(Ridge Plot)是一种数据可视化工具,主要用于比较多个分布。
优点
- 比较能力:非常适合比较多个分布的形状和大小。它能清晰地展示不同组之间的变化和趋势。
- 空间效率:通过在单个图中堆叠,山脊图可以有效地利用空间,显示多组数据,避免了创建多个单独的密度图。
- 美观性:山脊图在视觉上吸引人,可以用不同的颜色和样式来区分不同的组,使得数据更加生动和直观。
- 趋势识别:可以轻松识别多个群体数据中的共同模式和异常值。
- 数据量:适用于展示大量数据集,而不会显得拥挤或不清晰。
缺点
- 过度拥挤:如果组的数量过多,山脊图可能会显得拥挤,使得个别分布难以辨认。
- 精确度:由于重叠,难以精确读取特定点的值,尤其是在分布之间的重叠区域。
- 数值比较:虽然能够展示分布趋势,但不适合精确比较不同组之间的数值。
- 边缘效应:在堆叠的密度图中,可能会产生误导,例如,边缘的分布可能看起来比实际更少。
实现
本次更新主要以matlab为主,python实现代码也放于文末展示
matlab
首先是,绘制最初始的,最简单的山脊图,如下所示
% 清空环境变量和窗口
clear; close all;
% 生成模拟数据
data = [];
groups = 6;
for i = 1:groups
data = [data; normrnd(i, 0.5, [200, 1])];
end
% 为每组数据创建一个标签
group = repelem(1:groups, 200)';
% 创建一个图形窗口
figure;
% 对每组数据进行绘制
for i = 1:groups
% 选择当前组的数据
subset = data(group == i);
% 计算核密度估计
[f, xi] = ksdensity(subset);
% 绘制密度曲线,并上移相应的高度以创建堆叠效果
plot(xi, f + i, 'LineWidth', 2);
hold on;
end
% 添加图例和坐标轴标签
legend('Group 1', 'Group 2', 'Group 3', 'Group 4', 'Group 5', 'Group 6');
xlabel('Value');
ylabel('Density');
title('Ridge Plot Example');
% 显示图形
hold off;
为了进一步美化图形,添加一些元素和调整一些参数来增强其视觉效果。
% 清空环境变量和窗口
clear; close all;
% 生成模拟数据
data = [];
groups = 6;
colors = jet(groups); % 使用彩虹色系
for i = 1:groups
data = [data; normrnd(i, 0.5, [200, 1])];
end
% 为每组数据创建一个标签
group = repelem(1:groups, 200)';