0 项目说明
基于opencv与SVM的车牌识别系统
提示:适合用于课程设计或毕业设计,工作量达标,源码开放
1 主要实现
用python3+opencv3做的中国车牌识别,包括算法和客户端界面,只有2个文件,surface.py是界面代码,predict.py是算法代码,界面不是重点所以用tkinter写得很简单。
2 环境配置
python3.7.3
opencv4.0.0.21
numpy1.16.2
Tkinter
PIL5.4.1
3 界面效果
4 算法实现
算法思想来自于网上资源,先使用图像边缘和车牌颜色定位车牌,再识别字符。
- 车牌定位在predict方法中,为说明清楚,完成代码和测试后,加了很多注释,请参看源码。
- 车牌字符识别也在predict方法中,请参看源码中的注释,需要说明的是,车牌字符识别使用的算法是opencv的SVM,
opencv的SVM使用代码来自于opencv附带的sample,StatModel类和SVM类都是sample中的代码。 - SVM训练使用的训练样本来自于github上的EasyPR的c++版本。
由于训练样本有限,测试时会发现,车牌字符识别,可能存在误差,尤其是第一个中文字符出现的误差概率较大。源码中,上传了EasyPR中的训练样本,在train\目录下,如果要重新训练请解压在当前目录下,并删除原始训练数据文件svm.dat和svmchinese.dat。
5 项目源码
import tkinter as tk
from tkinter.filedialog import *
from tkinter import ttk
import predict
import cv2
from PIL import Image, ImageTk
import threading
import time
class Surface(ttk.Frame):
pic_path = ""
viewhigh = 600
viewwide = 600
update_time = 0
thread = None
thread_run = False
camera = None
color_transform = {"green":("绿牌","#55FF55"), "yello":("黄牌","#FFFF00"), "blue":("蓝牌","#6666FF")}
def __init__(self, win):
ttk.Frame.__init__(self, win)
frame_left = ttk.Frame(self)
frame_right1 = ttk.Frame(self)
frame_right2 = ttk.Frame(self)
win.title("车牌识别")
win.state("zoomed")
self.pack(fill=tk.BOTH, expand=tk.YES, padx="5", pady="5")
frame_left.pack(side=LEFT,expand=1,fill=BOTH)
frame_right1.pack(side=TOP,expand=1,fill=tk.Y)
frame_right2.pack(side=RIGHT,expand=0)
ttk.Label(frame_left, text='原图:').pack(anchor="nw")
ttk.Label(frame_right1, text='车牌位置:').grid(column=0, row=0, sticky=tk.W)
from_pic_ctl = ttk.Button(frame_right2, text="来自图片", width=20, command=self.from_pic)
from_vedio_ctl = ttk.Button(frame_right2, text="来自摄像头", width=20, command=self.from_vedio)
self.image_ctl = ttk.Label(frame_left)
self.image_ctl.pack(anchor="nw")
self.roi_ctl = ttk.Label(frame_right1)
self.roi_ctl.grid(column=0, row=1, sticky=tk.W)
ttk.Label(frame_right1, text='识别结果:').grid(column=0, row=2, sticky=tk.W)
self.r_ctl = ttk.Label(frame_right1, text="")
self.r_ctl.grid(column=0, row=3, sticky=tk.W)
self.color_ctl = ttk.Label(frame_right1, text="", width="20")
self.color_ctl.grid(column=0, row=4, sticky=tk.W)
from_vedio_ctl.pack(anchor="se", pady="5")
from_pic_ctl.pack(anchor="se", pady="5")
self.predictor = predict.CardPredictor()
self.predictor.train_svm()
def get_imgtk(self, img_bgr):
img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
im = Image.fromarray(img)
imgtk = ImageTk.PhotoImage(image=im)
wide = imgtk.width()
high = imgtk.height()
if wide > self.viewwide or high > self.viewhigh:
wide_factor = self.viewwide / wide
high_factor = self.viewhigh / high
factor = min(wide_factor, high_factor)
wide = int(wide * factor)
if wide <= 0 : wide = 1
high = int(high * factor)
if high <= 0 : high = 1
im=im.resize((wide, high), Image.ANTIALIAS)
imgtk = ImageTk.PhotoImage(image=im)
return imgtk
def show_roi(self, r, roi, color):
if r :
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
roi = Image.fromarray(roi)
self.imgtk_roi = ImageTk.PhotoImage(image=roi)
self.roi_ctl.configure(image=self.imgtk_roi, state='enable')
self.r_ctl.configure(text=str(r))
self.update_time = time.time()
try:
c = self.color_transform[color]
self.color_ctl.configure(text=c[0], background=c[1], state='enable')
except:
self.color_ctl.configure(state='disabled')
elif self.update_time + 8 < time.time():
self.roi_ctl.configure(state='disabled')
self.r_ctl.configure(text="")
self.color_ctl.configure(state='disabled')
def from_vedio(self):
if self.thread_run:
return
if self.camera is None:
self.camera = cv2.VideoCapture(0)
if not self.camera.isOpened():
mBox.showwarning('警告', '摄像头打开失败!')
self.camera = None
return
self.thread = threading.Thread(target=self.vedio_thread, args=(self,))
self.thread.setDaemon(True)
self.thread.start()
self.thread_run = True
def from_pic(self):
self.thread_run = False
self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])
if self.pic_path:
img_bgr = predict.imreadex(self.pic_path)
self.imgtk = self.get_imgtk(img_bgr)
self.image_ctl.configure(image=self.imgtk)
resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)
for resize_rate in resize_rates:
print("resize_rate:", resize_rate)
r, roi, color = self.predictor.predict(img_bgr, resize_rate)
if r:
break
#r, roi, color = self.predictor.predict(img_bgr, 1)
self.show_roi(r, roi, color)
@staticmethod
def vedio_thread(self):
self.thread_run = True
predict_time = time.time()
while self.thread_run:
_, img_bgr = self.camera.read()
self.imgtk = self.get_imgtk(img_bgr)
self.image_ctl.configure(image=self.imgtk)
if time.time() - predict_time > 2:
r, roi, color = self.predictor.predict(img_bgr)
self.show_roi(r, roi, color)
predict_time = time.time()
print("run end")
def close_window():
print("destroy")
if surface.thread_run :
surface.thread_run = False
surface.thread.join(2.0)
win.destroy()
if __name__ == '__main__':
win=tk.Tk()
surface = Surface(win)
win.protocol('WM_DELETE_WINDOW', close_window)
win.mainloop()