GNN可以用于多变量时间序列的异常检测,尤其是在数据具有图结构特征时。通过结合GNN的特性和其他深度学习技术,可以在多元时间序列数据中发现异常模式,从而在金融、医疗、工业监控等多个领域发挥作用。
今天盘点用于时序异常检测的GNN相关的顶会论文19篇,论文的方法和创新点我都帮同学们总结好了,大家可以用作参考。
篇幅原因只分享一部分论文,其他paper需要的同学看文末
用于检测多元时间序列异常和根本原因的因果方法
「方法:」首先从数据中学习因果结构,然后根据局部因果机制的条件分布推断一个实例是否是异常。由于因果系统具有模块化的特性,原始问题被分解为一系列简单的低维异常检测问题,从而可以直接识别异常发生的位置(根因)。
「创新点:」
-
从因果视角观察异常:作者从因果视角重新定义了多变量时间序列的异常检测问题,将异常视为不遵循正常因果机制的实例,这有助于理解异常发生的位置和方式,并促进了在理解的基础上进行异常检测。
-
基于因果结构的模块化框架:作者提出了一种新颖的框架,通过利用从数据中发现的因果结构,将多变量时间序列的异常检测问题分解为一系列独立的低维异常检测问题,从而不仅可以更准确地检测异常,还可以自然地找到其根本原因。