随机事件与随机变量

随机事件

1 定义

随机事件需满足以下三个条件:

  1. 可以在相同条件下重复进行;
  2. 结果有多种可能性,并且所有可能结果事先已知;
  3. 做一次试验究竟哪个结果出现,事先不能确定。

2 随机事件的概率

随机事件的概率主要有以下性质:

1 对于任一事件A,均有 P ( A ˉ ) = 1 − P ( A ) P(\bar{A})=1−P(A) P(Aˉ)=1P(A).

2 对于两个事件A和B,若 A ⊂ B A⊂B AB,则有

P ( B − A ) = P ( B ) − P ( A ) , P ( B ) > P ( A ) P(B−A)=P(B)−P(A),P(B)>P(A) P(BA)=P(B)P(A),P(B)>P(A).

3 对于任意两个事件A和B,有

P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A∪B)=P(A)+P(B)−P(A∩B) P(AB)=P(A)+P(B)P(AB).

3 古典概型

我们将掷骰子游戏进行推广,设随机事件 E 的样本空间中只有有限个样本点,即 Ω = { ω 1 , ω 2 , . . . , ω n } Ω=\{ω1,ω2,...,ωn\} Ω={ω1,ω2,...,ωn},其中, n 为样本点的总数。每个样本点 ω i ( i = 1 , 2 , . . . , n ) ωi(i=1,2,...,n) ωi(i=1,2,...,n)出现是等可能的,并且每次试验有且仅有一个样本点发生,则称这类现象为古典概型。

例:求 k 个同班同学没有两人生日相同的概率。
解:​设 A A A= k 个同班同学没有两人生日相同
P ( A ) = C l k k ! l k = l ! l k ( l − k ) ! , l = 365 P(A) = \frac {C^k_lk!} {l^k} = \frac {l!} {l^k(l-k)!}, l=365 P(A)=lkClkk=lklk!l,l=365

Python代码实现,设 k = 40 k=40 k=40

#我们采用函数的递归的方法计算阶乘:
def factorial(n):
    if n == 0:
        return 1;
    else:
        return (n*factorial(n-1)) 
    
l_fac = factorial(365);          #l的阶乘
l_k_fac = factorial(365-40)      #l-k的阶乘
l_k_exp = 365**40                #l的k次方

P_B =  l_fac /(l_k_fac * l_k_exp)     #P(B)
print("事件B的概率为:",P_B)
print("40个同学中至少两个人同一天过生日的概率是:",1 - P_B)

4 条件概率

定义:
设 A 和 B 是两个事件,且 P ( B ) > 0 P(B)>0 P(B)>0,称 P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)= \frac {P(AB)} {P(B)} P(AB)=P(B)P(AB)为在事件 B 发生的条件下,事件 A 发生的概率。
可以得到: P ( A B ) = P ( B ∣ A ) P ( A ) = P ( A ∣ B ) P ( B ) P(AB)=P(B|A)P(A) =P(A|B)P(B) P(AB)=P(BA)P(A)=P(AB)P(B)

5 全概率公式和贝叶斯公式

5.1 全概率公式

B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 Ω \Omega Ω 的一个划分, A A A 为任一事件,则

P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) P(A) = \sum_{i=1}^{\infty } {P(B_i)}P(A|B_i) P(A)=i=1P(Bi)P(ABi)

称为全概率公式。

5.2 贝叶斯公式

B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 Ω \Omega Ω 的一个划分,则对任一事件 A ( P ( A ) > 0 ) A(P(A)>0) A(P(A)>0) ,有
P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 ∞ P ( B j ) P ( A ∣ B j ) , i = 1 , 2 , . . . P(B_i|A) =\frac {P(B_i A)} {P(A)} = \frac {P(A|B_i )P(B_i)} {\sum_{j=1}^{\infty }P( B_j)P(A|B_j)} ,i=1,2,... P(BiA)=P(A)P(BiA)=j=1P(Bj)P(ABj)P(ABi)P(Bi),i=1,2,...
称上式为贝叶斯公式,称 P ( B i ) ( i = 1 , 2 , . . . ) P(B_i)(i=1,2,...) P(Bi)(i=1,2,...) 为先验概率, P ( B i ∣ A ) ( i = 1 , 2 , . . . ) P(B_i|A)(i=1,2,...) P(BiA)i=1,2,...为后验概率。

注:贝叶斯公式也是在机器学习中朴素贝叶斯的核心,非常重要!

例:假定用血清甲胎蛋白法诊断肝癌。用 C C C 表示被检验者有肝癌这一事件,用 A A A 表示被检验者为阳性反应这一事件。当前有肝癌的患者被检测呈阳性反应的概率为0.95。即 P ( A ∣ C ) = 0.95 P(A|C) = 0.95 P(AC)=0.95 。当前非肝癌的患者被检测呈阴性反应的概率为0.9。即 P ( A ‾ ∣ C ‾ ) = 0.90 P(\overline {A}|\overline {C}) = 0.90 P(AC)=0.90 。若某人群中肝癌患者概率为0.0004,即 P ( C ) = 0.0004 P(C) = 0.0004 P(C)=0.0004,现在有一人呈阳性反应,求此人确为肝癌患者的概率是多少?

解:
P ( A ) = P ( C ) P ( A ∣ C ) + P ( C ‾ ) P ( A ∣ C ‾ ) P(A)= P(C)P(A|C)+P(\overline {C} )P(A|\overline {C}) P(A)=P(C)P(AC)+P(C)P(AC)

P ( C ∣ A ) = P ( C ) P ( A ∣ C ) P ( A ) = P ( C ) P ( A ∣ C ) P ( C ) P ( A ∣ C ) + P ( C ‾ ) P ( A ∣ C ‾ ) = 0.0004 ∗ 0.95 0.00040.95 + 0.9996 ∗ 0.1 = 0.0038 P(C|A) =\frac {P(C)P(A|C)} {P(A)}=\frac {P(C)P(A|C)} {P(C)P(A|C)+P(\overline {C} )P(A|\overline {C})} =\frac {0.0004*0.95}{0.00040.95 + 0.9996*0.1} =0.0038 P(CA)=P(A)P(C)P(AC)=P(C)P(AC)+P(C)P(AC)P(C)P(AC)=0.00040.95+0.99960.10.00040.95=0.0038




随机变量

1 定义

E E E 是随机试验, Ω \Omega Ω 是样本空间,如果对于每一个 ω ∈ Ω \omega \in \Omega ωΩ 。都有一个确定的实数 X ( ω ) X(\omega) X(ω) 与之对应,若对于任意实 x ∈ R x \in R xR , 有 ω : X ( ω ) < x ∈ F {\omega :X(\omega) < x } \in F ωX(ω)<xF ,则称 Ω \Omega Ω 上的单值实函数 X ( ω ) X(\omega) X(ω) 为一个随机变量。

• 随机变量的分布函数定义:

​ 设 X X X 是一个随机变量,对任意的实数 x x x ,令 F ( x ) = P { X < = x } , x ∈ ( − ∞ , + ∞ ) F(x) = P \{X<=x\} ,x \in (- \infty ,+ \infty) F(x)=P{X<=x},x(,+)​ 则称 F ( x ) F(x) F(x) 为随机变量 x x x 的分布函数,也称为概率累积函数。

2 离散型随机变量和二项分布

2.1 离散型随机变量

​如果随机变量 X X X 的全部可能取值只有有限多个或可列无穷多个,则称 X X X 为离散型随机变量。掷骰子的结果就是离散型随机变量。
我们可以用下表来表示分布律:

X X X x 1 x_1 x1 x 2 x_2 x2 x n x_n xn
p k p_k pk p 1 p_1 p1 p 2 p_2 p2 p n p_n pn

离散型随机变量的分布函数为: F ( x ) = P ( X < = x ) = ∑ x k < = x P ( X = x k ) = ∑ x k < = x P k F (x) = P { (X<=x) } =\sum_{x_k <=x}{ P { (X=x_k )} } = \sum_{x_k <=x}{ P_k} F(x)=P(X<=x)=xk<=xP(X=xk)=xk<=xPk

2.2 二项分布

从一批产品中检验次品,在其中进行有放回抽样 n n n 次,抽到次品称为“成功”,抽到正品称为“失败“,这就是 n n n 重Bernoulli试验。

A = { n 重 伯 努 利 试 验 中 A 出 现 k 次 } A =\{ n重伯努利试验中A出现k次\} A={nAk} P ( A k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n . P(A_k) =C^k_np^k(1-p)^{n-k},k=0,1,2,...n. P(Ak=Cnkpk(1p)nk,k=0,1,2,...n. 这就是著名的二项分布,常记作 B ( n , k ) B(n,k) B(nk

其分布函数为:
F ( x ) = ∑ k = [ x ] C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n . F(x) = \sum_{k=}^{[x]} {C^k_np^k(1-p)^{n-k}},k=0,1,2,...n. Fx=k=[x]Cnkpk(1p)nk,k=0,1,2,...n. 其中, [ x ] [x] [x] 表示下取整,即不超过 x x x 的最大整数。

3 随机变量的数字特征

3.1 期望

离散型: 设离散型随机变量 X X X 的分布律为 P X = x i = p i , i = 1 , 2 , . . . , P { X=x_i} = p_i ,i =1,2,..., PX=xi=pi,i=12... 若级数 $ \sum_{i} {|x_i|p_i}$ 收敛,

(收敛指会聚于一点,向某一值靠近,相对于发散)。则称级数 ∑ i x i p i \sum_{i} {x_ip_i} ixipi 的和为随机变量 X X X 的数学期望。记为 E ( X ) E(X) E(X) ,即:

E ( X ) = ∑ i x i p i E(X) = \sum_{i} {x_ip_i} E(X)=ixipi

连续型:设连续型随机变量 X X X 的概率密度函数为 f ( x ) f(x) f(x) ,若积分 ∫ − ∞ + ∞ ∣ x ∣ f ( x ) d x \int_{- \infty}^{+ \infty}{|x|f(x)}dx +xfxdx 收敛, 称积分 ∫ − ∞ + ∞ x f ( x ) d x \int_{- \infty}^{+ \infty}{xf(x)}dx +xfxdx 的值为随机变量 X X X 的数学期望,记为 E ( X ) E(X) E(X) ,即: E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)= \int_{- \infty}^{+ \infty}{xf(x)}dx E(X)=+xfxdx
E ( X ) E(X) E(X) 又称为均值。
数学期望代表了随机变量取值的平均值,是一个重要的数字特征。数学期望具有如下性质:

  1. c c c 是常数,则 E ( c ) = c E(c) =c E(c)=c ;
  2. E ( a X + b Y ) = a E ( X ) + b E ( Y ) E(aX+bY) = aE(X) +bE(Y) E(aX+bY)=aE(X)+bE(Y) , 其中a, b为任意常数;
  3. X , Y X, Y X,Y 相互独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY) = E(X)E(Y) E(XY)=E(X)E(Y) ; (相互独立就是没有关系,不相互影响)。

3.2 方差

X X X 为随机变量,如果 E [ X − E ( X ) ] 2 E{ [X-E(X)]^2} E[XE(X)]2 存在,则称 E [ X − E ( X ) ] 2 E{ [X-E(X)]^2} E[XE(X)]2 X X X 的方差。记为 V a r ( X ) Var(X) Var(X) , 即:
V a r ( X ) = E [ X − E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 Var (X) =E{ [X-E(X)]^2} =E(X^2)-[E(X)]^2 VarX=E[XE(X)]2=E(X2)[E(X)]2

​ 并且称 V a r ( X ) \sqrt{Var(X)} Var(X) X X X 的标准差或均方差。

方差是用来描述随机变量取值相对于均值的离散程度的一个量,也是非常重要的数字特征。方差有如下性质:

  1. c c c 是常数,则 V a r ( c ) = 0 Var(c) =0 Var(c)=0 ;
  2. V a r ( a X + b ) = a 2 V a r ( X ) Var(aX+b) = a^2Var(X) Var(aX+b)=a2Var(X) , 其中a, b为任意常数;
  3. X , Y X, Y X,Y 相互独立,则 V a r ( X + Y ) = V a r ( X ) + V a r ( Y ) Var(X+Y) = Var(X) +Var(Y) Var(X+Y)=Var(X)+Var(Y)

3.3 协方差

协方差和相关系数都是描述随机变量 X X X 与随机变量 Y Y Y 之间的线性联系程度的数字量。

X , Y X, Y X,Y 为两个随机变量,称 E [ X − E ( X ) ] [ Y − E ( Y ) ] E{ [X-E(X)] [Y-E(Y)]} E[XE(X)][YE(Y)] X X X Y Y Y 的协方差,记为 C o v ( X , Y ) Cov(X, Y) Cov(X,Y),即: C o v ( X , Y ) = E [ X − E ( X ) ] [ Y − E ( Y ) ] Cov(X, Y) = E{ [X-E(X)] [Y-E(Y)]} Cov(X,Y)=E[XE(X)][YE(Y)] 协方差有如下性质:

C o v ( X , Y ) = C o v ( Y , X ) Cov(X, Y) = Cov(Y, X) Cov(X,Y)=Cov(Y,X) ;

C o v ( a X + b , c Y + d ) = a c C o v ( X , Y ) Cov(aX+b,cY+d) =ac Cov( X,Y) Cov(aX+bcY+d)=acCov(XY) ,其中, a , b , c , d a,b,c,d a,b,c,d 为任意常数;

C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y) =Cov( X_1,Y) +Cov( X_2,Y) Cov(X1+X2Y)=Cov(X1Y)+Cov(X2Y) ;

C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y) =E( XY) -E( X)E(Y) Cov(XY)=E(XY)E(X)E(Y) ; 当 X , Y X,Y X,Y 相互独立时,有 C o v ( X , Y ) = 0 Cov(X,Y) = 0 Cov(XY)=0;

∣ C o v ( X , Y ) ∣ < = V a r ( X ) V a r ( Y ) |Cov(X,Y)| <= \sqrt {Var(X)} \sqrt {Var(Y)} Cov(XY)<=Var(X) Var(Y) ;

C o v ( X , X ) = V a r ( X ) Cov(X,X) =Var( X) Cov(XX)=Var(X) ;

V a r ( X ) > 0 , V a r ( Y ) > 0 \sqrt {Var(X)} >0 ,\sqrt {Var(Y)} >0 Var(X) >0Var(Y) >0 时,称 ρ ( X , Y ) = C o v ( X , Y ) V a r ( X ) V a r ( Y ) \rho(X,Y) = \frac{Cov(X,Y)}{\sqrt {Var(X)} \sqrt {Var(Y)}} ρX,Y=Var(X) Var(Y) Cov(XY) X , Y X,Y X,Y 的相关系数,它是无纲量的量(也就是说没有单位,只是个代数值)。

基本上我们都会用相关系数来衡量两个变量之间的相关程度。相关系数在-1到1之间,小于零表示负相关,大于零表示正相关。绝对值 ∣ ρ ( X , Y ) ∣ |\rho(X,Y)| ρX,Y 表示相关度的大小。越接近1,相关度越大。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值