✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
本文探讨了将分解原理应用于离散时间强化学习以解决子系统网络最优控制问题。控制设计被定义为一个线性二次调节器图问题,其中性能函数耦合了子系统的动力学。我们首先提出一种基于在线行为的无模型离散时间强化学习算法,无需使用系统动力学模型。然而,对于较大的网络,这种方法可能会导致极长的学习过程。为了解决这个问题,我们开发了一种基于动态模态分解 (Dynamic Mode Decomposition, DMD) 的高效无模型强化学习算法。该分解方法降低了测量数据的规模,同时保留了原始网络的动态信息。该算法随后被在线实现。我们通过一致性网络和电力系统网络的例子验证了所提出方法的有效性。
一、引言
随着复杂网络系统规模的不断扩大,其最优控制问题日益成为研究热点。传统的基于模型的控制方法通常需要精确的系统动力学模型,而在许多实际应用中,获取精确模型往往困难且成本高昂。强化学习 (Reinforcement Learning, RL) 作为一种无需精确模型即可进行控制设计的方法,近年来受到了广泛关注。然而,直接将强化学习应用于大型网络系统,其计算复杂度和样本效率仍然是制约其应用的关键因素。
本文针对大型网络系统的最优控制问题,提出了一种基于分解原理的无模型离散时间强化学习算法。该算法的核心思想是利用动态模态分解 (DMD) 技术对网络系统的动态特性进行降维处理,从而降低强化学习算法的计算复杂度和数据需求,提高学习效率。 这种方法避免了对系统精确动力学模型的依赖,并且能够有效地处理高维数据,从而适用于解决大型网络系统的最优控制问题。
二、基于在线行为的无模型强化学习算法
在不依赖系统动力学模型的情况下,我们可以直接利用网络系统的在线行为数据进行强化学习。这里采用一种基于Q-learning的无模型算法。该算法通过不断地与环境交互,学习状态-动作值函数Q(s, a),其中s表示系统状态,a表示控制动作。算法的更新规则如下:
Q(s, a) ← (1 - α)Q(s, a) + α[r + γ max<sub>a'</sub> Q(s', a')]
其中,α为学习率,γ为折扣因子,r为当前时刻获得的奖励,s'为下一时刻的状态。 这种算法简单易懂,但对于大型网络系统,其收敛速度慢,需要大量的样本数据,学习过程可能非常漫长,这限制了其在实际应用中的效率。
三、基于动态模态分解的无模型强化学习算法
为了克服基于在线行为的无模型强化学习算法的效率问题,我们提出了一种基于动态模态分解 (DMD) 的改进算法。DMD是一种有效的降维技术,能够将高维数据投影到低维空间,同时保留其主要的动态信息。 具体来说,我们首先利用DMD对网络系统的在线行为数据进行分解,得到一组低维的动态模态。然后,我们将强化学习算法应用于这些低维模态上,学习相应的Q函数。 由于低维模态保留了原始网络的主要动态信息,因此基于低维模态学习得到的控制策略可以有效地控制原始网络系统。 这种方法显著降低了算法的计算复杂度和数据需求,提高了学习效率。
四、算法的在线实现
为了进一步提高算法的实用性,我们将提出的基于DMD的强化学习算法进行在线实现。在线实现的关键在于实时地更新DMD分解结果和Q函数。 我们采用递增式DMD算法,在每一步迭代中,只更新少量新的数据,从而避免了对所有数据的重新计算,提高了算法的实时性。 同时,我们采用一种高效的Q函数更新方法,保证算法的快速收敛。
五、实验验证
为了验证所提出方法的有效性,我们进行了两个实验,分别应用于一致性网络和电力系统网络。 在一致性网络实验中,我们验证了该算法能够有效地引导网络系统达到一致状态。 在电力系统网络实验中,我们验证了该算法能够有效地稳定电力系统,并提高系统的运行效率。实验结果表明,基于DMD的无模型强化学习算法相比于传统的无模型强化学习算法,具有显著的效率提升,能够有效地解决大型网络系统的最优控制问题。
六、结论
本文提出了一种基于分解原理的离散时间强化学习算法,用于解决大型网络系统的最优控制问题。该算法利用DMD技术对网络系统进行降维处理,有效地降低了算法的计算复杂度和数据需求,提高了学习效率。通过一致性网络和电力系统网络的实验验证,证明了该算法的有效性和实用性。未来的研究方向包括进一步优化DMD算法,探索更先进的强化学习算法,以及将该方法应用于更多类型的网络系统。
📣 部分代码
[U, S, V] = svd(X11, 'econ');
Atilde1 = U' * X22 * V / S;
[W, D] = eig(Atilde1);
Phio = X22 * V / S * W;
r = length(find(diag(S)>thresh));
%truncation to rank r
U_r = U(:, 1:r);
S_r = S(1:r, 1:r);
V_r = V(:, 1:r);
Atilde = U_r' * X22 * V_r / S_r;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇