✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
半导体器件的微观特性很大程度上取决于载流子的量子力学行为。传统上,对载流子输运特性的研究常常基于有效质量近似,该近似假设能带结构为抛物线型。然而,对于许多重要的半导体材料,例如窄带隙半导体和低维结构,尤其是在高能态下,能带的非抛物线性特性变得显著,有效质量近似不再适用,这将导致基于抛物线型能带假设的计算结果与实验结果产生偏差。因此,发展能够精确求解非抛物线型一维薛定谔方程的数值方法,对于深入理解和设计新型半导体器件至关重要。本文将探讨半导体中非抛物线型一维薛定谔方程的求解方法,并对其精度和效率进行分析。一维薛定谔方程描述了微观粒子在势场中的量子力学行为。在考虑非抛物线型能带结构的情况下,一维薛定谔方程可以表示为:
(-ħ²/2m*(k)) d²/dx² Ψ(x) + V(x)Ψ(x) = EΨ(x)
其中,ħ为约化普朗克常数,m*(k)为动量k的函数,表示能量依赖的有效质量,V(x)为势能函数,E为能量本征值,Ψ(x)为波函数。与抛物线型能带情况不同,这里的有效质量m*(k)不再是常数,而是动量的函数,这使得方程的求解变得复杂。
由于m*(k)的能量依赖性,无法直接采用解析方法求解上述方程。因此,数值方法成为求解该方程的主要手段。常用的数值方法包括有限差分法、有限元法和谱方法等。
1. 有限差分法: 有限差分法是求解微分方程的一种经典数值方法。其基本思想是将微分方程中的导数用差商近似代替,从而将微分方程转化为代数方程组。对于一维薛定谔方程,可以使用中心差分格式对二阶导数进行离散:
d²/dx² Ψ(x) ≈ [Ψ(x+Δx) - 2Ψ(x) + Ψ(x-Δx)] / Δx²
其中,Δx为空间步长。将该差分格式代入薛定谔方程,即可得到一个三对角矩阵方程组,可以使用数值算法,例如Thomas算法,高效地求解。然而,有限差分法的精度受到空间步长Δx的限制,较小的Δx可以提高精度,但同时也会增加计算量。 此外,对于复杂的势能函数,有限差分法可能需要更精细的网格划分,才能保证计算精度。
2. 有限元法: 有限元法是另一种常用的数值方法,其优势在于能够处理复杂几何形状和边界条件。有限元法将求解区域划分成多个单元,在每个单元上采用插值函数逼近波函数,然后将问题转化为一个大型线性方程组。有限元法的精度取决于单元的形状和大小,以及插值函数的阶数。与有限差分法相比,有限元法在处理不规则边界和复杂势能时具有更大的优势,但也需要更多的计算资源。
3. 谱方法: 谱方法是基于将波函数展开成一组正交基函数的逼近方法。常用的正交基函数包括傅里叶级数、切比雪夫多项式等。谱方法的精度通常高于有限差分法和有限元法,但其适用范围相对有限,主要适用于具有光滑解的问题。 对于具有奇异点的势能函数,谱方法的精度可能会受到影响。
在选择具体的数值方法时,需要根据问题的具体情况进行权衡。如果势能函数相对简单,并且对精度要求不高,有限差分法可能是最有效的方法。如果势能函数比较复杂,或者需要处理不规则边界,有限元法可能更合适。而如果问题具有光滑解,并且对精度要求很高,谱方法则是一个不错的选择。
4. 有效质量的处理: 由于有效质量m*(k)是动量的函数,在数值求解过程中需要特别关注其处理方法。 一种常用的方法是将m*(k)用能量E的函数表示,然后在迭代过程中不断更新有效质量。另一种方法是采用自洽迭代算法,在每次迭代中计算波函数和有效质量,直到收敛。
5. 边界条件: 求解一维薛定谔方程需要指定合适的边界条件。常用的边界条件包括狄利克雷边界条件(波函数在边界处取固定值)和诺依曼边界条件(波函数在边界处的导数取固定值)。边界条件的选择取决于具体的物理问题。
结论:求解半导体中非抛物线型一维薛定谔方程是一个具有挑战性的课题。本文综述了几种常用的数值方法,并讨论了在实际计算中需要考虑的关键问题,例如有效质量的处理和边界条件的选择。选择合适的数值方法并进行精细的数值计算,才能准确描述载流子的量子力学行为,为半导体器件的设计和优化提供重要的理论支撑。未来的研究可以关注更高效、更精确的数值算法的开发,以及将非抛物线型能带效应引入到更复杂的半导体器件模拟中。
📣 部分代码
psi=z*0+1; psi_old=psi;
while e<Emax && length(E)<n
C = C+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% In this block, it is scanning to find the mass at the right Energy, m(E)
idx=[0 0];
epsi=1;
while length(idx)>1
idx=find( abs( (Evec-e )) < epsi ) ;
if isempty(idx)
idx=IDX(1);
else
IDX=idx;
epsi=epsi/2;
end
end
Mass=me(idx,:);
% [ e Mass(round(end/2)) ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
psi_old = psi;
psi=Schroed1D_Euler_Eval(z,V0,Mass,e,method);
if (sign( psi(end) ) ~= sign( psi_old(end) ) ) && C>1 % here, I catch a quantum state because the last point of psi change sign
N=N+1; de=dE;
while abs(de)>precision
if sign( psi(end) ) ~= sign( psi_old(end) )
de = -de/2;
end
e=e+de;
psi_old=psi;
psi=Schroed1D_Euler_Eval(z,V0,Mass,e,method);
end
E(N,:)=e; PSI(:,N)= psi;
C=0;
end
e=e+dE;
end
psi=PSI;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% Normalization of the Wavefunction %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:N
psi(:,i)=psi(:,i)/sqrt(trapz(z',abs(psi(:,i)).^2));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function[psi]=Schroed1D_Euler_Eval(z,V0,Mass,ee,method)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
h=6.62606896E-34; %% Planck constant [J.s]
hbar=h/(2*pi);
e=1.602176487E-19; %% electron charge [C]
m0=9.10938188E-31; %% electron mass [kg]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dz=z(2)-z(1);
dz=[ dz diff(z)];
y = [0 1];
if method==1
for i = 1:length(z) %% number of z steps to take
dy(2) = -2*e/(hbar^2) * ( ee - V0(i) ) * y(1) ; %% Equation for dv/dz
dy(1) = Mass(i)*m0*y(2); %% Equation for dx/dz
y = y + dz(i)*dy ; %% integrate both equations with Euler
psi(i)= y(1);
end
elseif method==2
for i = 1:length(z) %% number of z steps to take
dy(2) = -2*e/(hbar^2) * ( ee - V0(i) ) * y(1) ; %% Equation for dv/dz
dy(1) = Mass(i)*m0*y(2); %% Equation for dx/dz
K = y + 0.5*dz(i)*dy;
dK(2) = -2*e/(hbar^2) * ( ee - V0(i) ) * K(1) ; %% Equation for dv/dz
dK(1) = Mass(i)*m0*K(2); %% Equation for dx/dz
y = y + dz(i)*dK;
psi(i)= y(1);
end
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇