✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
本文报告对无人机结构和巡航控制进行了仿真研究,分别利用SOLIDWORKS进行三维建模,并结合SimMechanics和MATLAB搭建动力学模型及控制系统,最终实现了无人机巡航轨迹的仿真,并开发了用户交互界面,方便用户理解和调节PID控制参数。
一、 无人机结构仿真
首先,我们使用SOLIDWORKS软件对无人机进行了详细的三维建模。该过程精确地描述了无人机的各个组成部件,包括机体、电机、螺旋桨、电池等,并最终将这些部件组装成完整的无人机模型。(图1)。 这种精细的建模方式确保了后续仿真结果的准确性,为基于物理的仿真提供了坚实的基础。 模型中考虑了各个部件的几何尺寸、材料属性以及质量分布等关键参数,这对于准确模拟无人机的动力学行为至关重要。 例如,螺旋桨的几何形状和叶片剖面直接影响其推力特性,而电池的质量分布则影响无人机的重心位置,这些细节都被精确地体现在模型之中。
基于SOLIDWORKS建立的精确三维模型,我们通过SimMechanics Link实现了模型的自动化生成。SimMechanics Link 是一款强大的工具,它能够将SOLIDWORKS模型中的几何信息和物理属性自动转换为SimMechanics模型,从而简化了模型构建过程,并提高了建模效率。生成的SimMechanics模型包含了无人机各个部件的运动学和动力学特性,例如刚体动力学、关节约束以及电机驱动等。(图2)。 将生成的SimMechanics模型导入MATLAB环境后,我们就可以通过编写MATLAB程序来施加各种输入,例如控制指令和外部干扰,从而模拟无人机的飞行状态,并分析其动力学响应。
二、 无人机巡航仿真与PID控制
无人机巡航仿真的重点在于外环控制,我们采用经典的PID控制算法来实现对无人机飞行姿态和轨迹的控制。 PID控制器的表达式如下:(图3)
scss
u(t) = K_p e(t) + K_i ∫e(t)dt + K_d de(t)/dt
其中,u(t)为控制输出,e(t)为控制误差,K_p、K_i、K_d分别为比例、积分和微分增益。 通过调节这三个参数,可以改变控制器的响应特性,从而实现对无人机飞行性能的优化。 本研究中,我们主要使用了PD控制算法 (K_i = 0),即仅利用比例和微分项进行控制。(图4)。 PD控制具有响应速度快、抗扰能力强的优点,非常适合于无人机的姿态控制。 选择PD控制而不是PID控制,是为了避免积分项可能带来的积分饱和问题,从而提高系统的鲁棒性。
在设定好预定的航线后,我们进行了无人机巡航仿真。仿真结果包括巡航路线图、位移图和速度图。(图5, 图6, 图7)。 为了更全面地评估控制算法的性能,我们分别模拟了理想情况(忽略重力和干扰)和实际情况(考虑重力和正态分布的干扰噪声)。 图中蓝线代表理想情况下的无人机飞行轨迹和参数变化,红线则代表考虑重力和噪声干扰后的实际飞行情况。 对比两条曲线,可以清晰地观察到干扰对无人机飞行轨迹的影响,以及PD控制算法在抑制干扰方面的效果。 例如,在存在干扰的情况下,无人机的轨迹可能会出现轻微的偏差,但通过PD控制器的作用,偏差被有效地抑制在可接受的范围内。
三、 用户交互界面设计
为了方便用户理解PID控制参数对无人机飞行性能的影响,我们开发了一个用户交互界面。 该界面允许用户实时调整K_p和K_d参数,并观察参数变化对无人机飞行轨迹和姿态的影响。 通过这种直观的方式,用户可以更深入地理解PID控制原理,并掌握PID参数的调节技巧。 例如,用户可以尝试增加K_p值,观察无人机响应速度的变化;或者增加K_d值,观察系统稳定性的变化。 这种交互式学习方式,相比于单纯的理论学习,能够更有效地提高用户的理解和掌握程度。 用户界面还提供实时数据显示功能,例如无人机的姿态角、速度、位置等信息,这些信息可以帮助用户更好地分析无人机的飞行状态,并进行参数调整。
四、 结论与展望
本研究利用SOLIDWORKS和MATLAB平台,对无人机的结构和巡航控制进行了仿真研究。 研究结果表明,基于SOLIDWORKS的精确建模和基于MATLAB的SimMechanics仿真能够有效地模拟无人机的动力学行为,而PD控制算法能够较好地实现无人机的巡航控制。 用户交互界面的设计进一步提高了仿真系统的实用性和可理解性。
未来研究可以进一步扩展到以下几个方面: 首先,可以考虑更复杂的控制算法,例如基于模型预测控制(MPC)或自适应控制等;其次,可以引入更复杂的干扰模型,例如风力干扰和传感器噪声;最后,可以对无人机进行多旋翼的仿真,并将仿真结果与实际飞行数据进行对比验证,以进一步提高仿真模型的精度和可靠性。 总之,本研究为无人机仿真研究提供了一个良好的基础,并为未来的研究提供了方向。
📣 部分代码
endRow = startRow + size(continuousCon,1) - 1;
colStart = colEnd + 1;
colEnd = colStart + size(continuousCon,2) - 1;
A(startRow:endRow,colStart:colEnd) = continuousCon;
colEnd = multFact * iCon;
end
allCoeffs = A\b;
else
if(t > traj_time(end))
desired_state.pos = waypoints0(end,:)';
desired_state.vel = zeros(3,1);
desired_state.acc = zeros(3,1);
else
t_index = find(traj_time <= t,1,'last');
if(t == 0)
desired_state.pos = waypoints0(1,:)';
desired_state.vel = zeros(3,1);
desired_state.acc = zeros(3,1);
else
if(t_index > 1)
t = t - traj_time(t_index);
end
scale = t / time;
coeffs = allCoeffs(((t_index-1)*multFact + 1): (t_index*8), :);
desired_state.pos = ([1, scale, scale^2, scale^3, scale^4, scale^5, scale^6, scale^7] * coeffs)';
desired_state.vel = ([0, 1, 2*scale, 3*scale^2, 4*scale^3, 5*scale^4, 6*scale^5, 7*scale^6] * coeffs)';
desired_state.acc = ([0, 0, 2, 6*scale, 12*scale^2, 20*scale^3, 30*scale^4, 42*scale^5] * coeffs)';
end
end
desired_state.yaw = 0;
desired_state.yawdot = 0;
end
%
%% Fill in your code here
% desired_state.pos = zeros(3,1);
% desired_state.vel = zeros(3,1);
% desired_state.acc = zeros(3,1);
% desired_state.yaw = 0;
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇