【电力系统】基于多目标灰狼算法的冷热电联供型微网低碳经济调度附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着能源危机和环境污染日益加剧,传统电力系统正面临着严峻的挑战。分布式能源(Distributed Generation, DG)技术和微电网(Microgrid, MG)的兴起为解决这些问题提供了新的思路。微电网作为一种小型化的电力系统,通常由多种DG单元、储能装置和负荷组成,可以独立运行或与主电网并网运行。冷热电联供(Combined Cooling, Heating and Power, CCHP)系统作为一种高效的能源利用方式,能够同时满足用户的电力、热力和冷力需求,在微电网中具有广阔的应用前景。然而,如何优化CCHP型微电网的运行调度,实现经济性和环境效益的双重提升,仍然是当前研究的重要课题。本文将探讨基于多目标灰狼算法(Multi-Objective Grey Wolf Optimizer, MOGWO)的CCHP型微电网低碳经济调度策略。

一、 CCHP型微电网的优化调度模型构建

CCHP型微电网的优化调度旨在确定各DG单元的出力以及储能装置的充放电策略,以满足用户的负荷需求,并尽可能地降低运行成本和环境排放。一个有效的优化调度模型需要考虑以下几个关键因素:

  • 目标函数: 优化目标是多目标优化的核心。在CCHP型微电网中,通常需要同时考虑经济性和环境效益。经济性目标通常包括运行成本最小化,例如燃料成本、维护成本和交易成本。环境效益目标通常包括碳排放量最小化,可以通过对各DG单元的碳排放因子进行建模来实现。因此,目标函数可以表示为:

     

    ini

    min F = w1 * F_cost + w2 * F_emission  

    其中,F_cost代表运行成本,F_emission代表碳排放量,w1w2分别代表经济性和环境效益的权重系数,且w1 + w2 = 1。通过调整权重系数,可以根据实际需求调整经济性和环境效益的优先级。

  • 约束条件: 约束条件是保证微电网安全可靠运行的关键。主要包括以下几类:

    • 电力平衡约束:

       保证电力供需平衡,即各DG单元的出力之和加上储能装置的充放电功率等于负荷需求。

    • 热力平衡约束:

       保证热力供需平衡,即CHP单元和辅助锅炉的供热量之和加上储热装置的充放热量等于热负荷需求。

    • 冷力平衡约束:

       保证冷力供需平衡,即吸收式制冷机(Absorption Chiller, AC)的供冷量加上冷储能装置的充放冷量等于冷负荷需求。

    • 设备容量约束:

       各DG单元、储能装置和换热器的出力均应在其额定容量范围内。

    • 储能装置充放电速率约束:

       储能装置的充放电功率应在其最大充放电功率范围内。

    • 设备运行约束:

       例如CHP单元的出力上下限,以及启停约束等。

  • 设备模型: 对微电网中的各主要设备进行精确建模至关重要。例如:

    • CHP单元模型:

       描述输入燃料量与输出电功率和热功率之间的关系,通常采用多项式函数进行拟合。

    • 燃气轮机/内燃机模型:

       描述燃料消耗量与电功率输出之间的关系,以及相应的碳排放模型。

    • 光伏/风力发电模型:

       基于历史数据和气象预报数据,预测光伏和风力发电的输出功率。

    • 储能装置模型:

       描述储能装置的充放电特性,包括充放电效率、容量衰减等。

二、 基于多目标灰狼算法的求解策略

多目标灰狼算法(MOGWO)是一种基于灰狼社会等级结构的元启发式算法,适用于求解复杂的多目标优化问题。其核心思想是模拟灰狼的捕食行为,通过不断迭代更新狼群的位置,最终找到Pareto最优解集。MOGWO具有以下优点:

  • 全局搜索能力强:

     灰狼算法具有较强的全局搜索能力,能够有效避免陷入局部最优解。

  • 收敛速度快:

     通过模拟灰狼的社会等级结构和捕食行为,MOGWO能够快速收敛到Pareto最优解集。

  • 算法参数少:

     MOGWO的参数较少,易于调节和应用。

将MOGWO应用于CCHP型微电网的低碳经济调度问题,需要进行以下步骤:

  1. 编码: 将各DG单元的出力和储能装置的充放电功率编码为灰狼个体的位置。

  2. 初始化: 随机生成一定数量的灰狼个体,构成初始狼群。

  3. 计算目标函数值: 对于每个灰狼个体,计算其对应的运行成本和碳排放量,作为目标函数值。

  4. 非支配排序: 对狼群中的个体进行非支配排序,将个体划分为不同的Pareto等级。

  5. 拥挤度计算: 计算每个个体的拥挤度,用于维护解集的多样性。

  6. 精英选择: 选择Pareto等级最高的个体作为α狼,然后依次选择β狼和δ狼。

  7. 位置更新: 根据α、β和δ狼的位置,更新剩余个体的位置。位置更新公式如下:

     

    scss

    D = abs(C * Xp(t) - X(t))  
    X1 = Xp(t) - A1 * D  
    D = abs(C * Xβ(t) - X(t))  
    X2 = Xβ(t) - A2 * D  
    D = abs(C * Xδ(t) - X(t))  
    X3 = Xδ(t) - A3 * D  
    X(t+1) = (X1 + X2 + X3) / 3  

    其中,X(t)代表当前个体的位置,Xp(t)Xβ(t)Xδ(t)分别代表α、β和δ狼的位置,AC是系数向量,t代表迭代次数。

  8. 越界处理: 对更新后的个体位置进行越界处理,使其满足设备容量约束等约束条件。

  9. 更新Pareto最优解集: 将当前狼群中的非支配解与Pareto最优解集中的解进行比较,更新Pareto最优解集。

  10. 迭代终止判断: 判断是否达到最大迭代次数或满足其他终止条件,若满足则输出Pareto最优解集,否则返回步骤3。

通过上述步骤,MOGWO能够找到一组Pareto最优解,为决策者提供多样化的运行调度方案,以便根据实际需求进行选择。

三、 算法改进与优化方向

为了进一步提高MOGWO算法的性能,可以考虑以下改进和优化方向:

  • 自适应参数调整:

     MOGWO算法中的参数,如AC的调整策略,会影响算法的收敛速度和全局搜索能力。可以采用自适应参数调整策略,根据迭代过程中的种群状态动态调整参数,以提高算法的性能。

  • 混合优化策略:

     可以将MOGWO算法与其他优化算法相结合,例如粒子群算法(Particle Swarm Optimization, PSO)或差分进化算法(Differential Evolution, DE),利用不同算法的优势,提高算法的搜索能力。

  • 约束处理技术:

     对于复杂的约束条件,可以采用更有效的约束处理技术,例如罚函数法或可行域法,以提高算法的可行性。

  • 考虑需求响应:

     将需求响应(Demand Response, DR)机制纳入优化调度模型,通过激励用户调整用电行为,进一步降低运行成本和碳排放量。

四、 仿真实验与结果分析

为了验证基于MOGWO算法的CCHP型微电网低碳经济调度策略的有效性,可以构建一个包含CHP单元、燃气轮机、光伏、风力发电、储能装置和冷热电负荷的典型微电网系统,并利用MATLAB等软件进行仿真实验。通过比较不同调度策略下的运行成本和碳排放量,可以评估MOGWO算法的性能。实验结果可以从以下几个方面进行分析:

  • Pareto最优解集分析:

     分析Pareto最优解集的分布情况,以及各目标函数值之间的关系。

  • DG单元出力分析:

     分析各DG单元的出力情况,以及储能装置的充放电策略。

  • 成本分析:

     分析运行成本的构成,以及不同DG单元的燃料成本贡献。

  • 碳排放分析:

     分析碳排放量的构成,以及不同DG单元的碳排放贡献。

  • 与其他算法的比较:

     将MOGWO算法与其他优化算法(例如遗传算法GA、粒子群算法PSO)进行比较,分析MOGWO算法的优势。

五、 结论与展望

本文探讨了基于多目标灰狼算法的CCHP型微电网低碳经济调度策略,并构建了相应的优化调度模型。该模型能够同时考虑经济性和环境效益,并通过MOGWO算法求解Pareto最优解集,为决策者提供多样化的运行调度方案。未来的研究方向包括:

  • 考虑不确定性因素:

     微电网的运行受到多种不确定性因素的影响,例如光伏和风力发电的波动性,以及负荷需求的随机性。需要将这些不确定性因素纳入优化调度模型,并采用鲁棒优化或随机优化等方法进行求解。

  • 考虑多微电网互联:

     随着微电网的普及,多个微电网互联运行将成为一种趋势。需要研究多微电网互联的协调控制策略,以实现更高的能源利用效率和系统可靠性。

  • 应用智能电网技术:

     智能电网技术的应用,例如智能计量、高级配电自动化和实时监控系统,能够为微电网的优化调度提供更精确的数据支持和控制手段。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值