【故障诊断】一种滚动体轴承或齿轮的重复瞬态提取方法研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

滚动体轴承和齿轮是旋转机械的核心部件,其运行状态直接影响整个系统的稳定性和可靠性。早期故障往往表现为微弱的重复瞬态信号,淹没在复杂的背景噪声中,难以有效提取。本文旨在综述并探讨一种旨在提取滚动体轴承或齿轮重复瞬态的故障诊断方法。首先,概述了重复瞬态信号的特点和提取的意义,并分析了现有提取方法的局限性。然后,深入探讨了包括时域平均、循环平稳分析、稀疏表示以及基于深度学习的方法等多种重复瞬态提取技术,并重点分析了它们的优势和适用范围。最后,展望了未来研究方向,强调了面向实际应用、提高抗噪性能和实现智能化诊断的重要性。

关键词: 滚动体轴承,齿轮,重复瞬态,故障诊断,时域平均,循环平稳,稀疏表示,深度学习

引言

现代工业对机械设备的可靠性和安全性提出了更高的要求。作为旋转机械中的关键部件,滚动体轴承和齿轮的健康状态直接影响着整个系统的性能和寿命。早期故障往往表现为微弱的瞬态冲击信号,这些信号通常具有重复性,并且受到各种噪声和干扰的影响,使得故障诊断变得极具挑战性。因此,有效地提取这些重复瞬态信号,对于早期故障检测和预测性维护具有重要的意义。

重复瞬态信号是指在一定时间周期内重复出现的、持续时间较短的非平稳信号。在滚动体轴承和齿轮中,由局部缺陷(如裂纹、剥落、磨损等)引起的冲击会产生重复瞬态信号。这些信号的重复周期与滚动体轴承的旋转频率、保持架频率、滚动体通过频率以及齿轮的啮合频率等特征频率相关。然而,由于机械设备运行环境的复杂性,采集到的振动信号往往包含大量的噪声、谐波成分以及其他部件的振动干扰,导致重复瞬态信号被淹没,难以直接识别。

现有方法的局限性

目前,针对滚动体轴承和齿轮的故障诊断,已经发展了许多成熟的方法,例如时域分析、频域分析、时频分析等。然而,这些方法在提取重复瞬态信号方面都存在一定的局限性。

  • 时域分析:

     传统的时域分析方法,如均方根值、峰值因子等,虽然简单易用,但对噪声敏感,难以有效识别微弱的重复瞬态信号。

  • 频域分析:

     频域分析方法,如快速傅里叶变换(FFT),可以将信号分解为不同频率的成分,但对于非平稳信号,其频率成分会随时间变化,导致频谱分辨率降低,难以提取重复瞬态信号的特征频率。

  • 时频分析:

     时频分析方法,如短时傅里叶变换(STFT)、小波变换(WT)等,可以在时域和频域上同时分析信号,但由于时频分辨率的限制,难以同时获得高的时间分辨率和频率分辨率。此外,小波变换需要选择合适的小波基函数,对信号的适应性存在一定的要求。

重复瞬态提取方法研究

为了克服现有方法的局限性,研究者们提出了多种针对重复瞬态信号的提取方法。这些方法主要可以分为以下几类:

1. 时域平均 (Synchronous Averaging)

时域平均是一种经典的重复瞬态提取方法,其基本原理是将信号按照一定的周期进行分割,然后对分割后的信号进行平均。由于重复瞬态信号具有周期性,经过时域平均后,重复瞬态信号会被增强,而随机噪声会被抑制。

优势: 时域平均方法简单易懂,计算效率高。

适用范围: 适用于重复瞬态信号周期性较好、噪声水平较低的情况。

局限性: 时域平均方法需要准确的周期信息,如果周期估计不准确,会导致重复瞬态信号的模糊甚至抵消。此外,对于非严格周期性的信号,时域平均的效果会受到影响。为了提高时域平均的性能,可以采用自适应时域平均方法,该方法可以根据信号的特征自适应地调整平均周期。

2. 循环平稳分析 (Cyclostationary Analysis)

循环平稳分析是一种基于信号统计特性的信号处理方法。循环平稳信号是指其统计特性(如均值、方差、自相关函数等)具有周期性变化的信号。滚动体轴承和齿轮的故障信号通常具有循环平稳特性,因为故障引起的冲击会周期性地发生。循环平稳分析可以通过计算信号的循环自相关函数、循环功率谱等,来提取重复瞬态信号的特征。

优势: 循环平稳分析可以有效提取隐藏在噪声中的循环平稳信号,对非严格周期性的信号具有较强的适应性。

适用范围: 适用于故障信号具有循环平稳特性的情况。

局限性: 循环平稳分析的计算复杂度较高,需要较长的信号样本才能获得准确的统计特性。此外,对于某些类型的故障,其信号可能不具有明显的循环平稳特性,导致循环平稳分析的效果不佳。为了简化循环平稳分析的计算,可以采用快速计算循环平稳特征的方法,例如基于FastICA的循环平稳特征提取方法。

3. 稀疏表示 (Sparse Representation)

稀疏表示是一种基于信号压缩的信号处理方法。其基本思想是用少量的基向量(称为原子)来表示信号。如果信号在某个变换域(例如小波域、傅里叶域)中是稀疏的,那么可以使用少量的原子来近似表示信号,从而实现信号的压缩和降噪。对于包含重复瞬态信号的振动信号,可以通过选择合适的原子库,例如冲击原子、Gabor原子等,来稀疏表示重复瞬态信号,从而提取重复瞬态信号的特征。

优势: 稀疏表示可以有效提取噪声中的弱信号,对信号的先验知识要求较低。

适用范围: 适用于信号在某个变换域中具有稀疏性的情况。

局限性: 稀疏表示需要选择合适的原子库和稀疏度参数,这些参数的选择会影响稀疏表示的效果。此外,稀疏表示的计算复杂度较高,尤其是在高维信号的情况下。为了提高稀疏表示的效率,可以采用快速稀疏编码算法,例如正交匹配追踪(OMP)、迭代阈值算法(ISTA)等。

4. 基于深度学习的方法 (Deep Learning-based Methods)

近年来,深度学习在图像识别、自然语言处理等领域取得了显著的成果。深度学习也被应用于故障诊断领域,并取得了良好的效果。基于深度学习的重复瞬态提取方法,可以通过训练深度神经网络来自动学习重复瞬态信号的特征,并实现故障诊断。常用的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)、自编码器(Autoencoder)等。

优势: 深度学习可以自动学习信号的特征,无需人工干预,具有较强的泛化能力。

适用范围: 适用于有大量训练数据的情况。

局限性: 深度学习需要大量的训练数据才能获得良好的性能。此外,深度学习模型的训练需要较长的计算时间。为了克服深度学习的局限性,可以采用迁移学习、半监督学习等方法,利用已有的数据或知识来提高深度学习模型的性能。同时,为了提高深度学习模型的解释性,可以采用可视化技术,例如Grad-CAM,来观察深度学习模型关注的区域。

结论与展望

重复瞬态信号的提取是滚动体轴承和齿轮故障诊断的关键步骤。本文综述了多种重复瞬态提取方法,包括时域平均、循环平稳分析、稀疏表示以及基于深度学习的方法。每种方法都有其独特的优势和适用范围,在实际应用中需要根据具体情况选择合适的方法。

未来,重复瞬态信号提取方法的研究方向主要集中在以下几个方面:

  • 面向实际应用:

     针对实际工业环境中的复杂噪声和干扰,研究更加鲁棒的重复瞬态提取方法。例如,可以结合多种信号处理技术,提高方法的抗噪性能。

  • 提高抗噪性能:

     在现有方法的基础上,进一步研究抑制噪声和干扰的技术,例如,可以利用自适应滤波、盲源分离等方法,去除信号中的噪声成分。

  • 实现智能化诊断:

     结合人工智能技术,开发智能化的故障诊断系统,可以自动提取重复瞬态信号的特征,并实现故障的自动识别和预测。例如,可以利用深度学习技术,构建端到端的故障诊断模型,实现从原始振动信号到故障诊断结果的直接映射。

  • 结合多源信息:

     结合振动信号、温度信号、油液分析等多种信息源,进行综合故障诊断,提高故障诊断的准确性和可靠性。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值