【电力系统】考虑交通网络流量的电动汽车充电站规划【IEEE33节点】附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源危机和环境污染问题的日益突出,电动汽车(Electric Vehicles, EVs)作为一种绿色、环保的交通工具,受到了广泛的关注和推广。然而,大规模电动汽车的普及给现有电力系统带来了新的挑战,尤其是在充电基础设施方面。合理规划电动汽车充电站(Electric Vehicle Charging Stations, EVCS)的位置和容量,对于保障电动汽车用户的充电需求、缓解电力系统负荷压力以及提升交通网络效率至关重要。本文将围绕“考虑交通网络流量的电动汽车充电站规划”这一课题,以IEEE 33节点电力系统为研究对象,深入探讨相关理论方法和应用实例。

一、 引言:电动汽车充电站规划的重要性与挑战

电动汽车充电站的规划并非简单的电力设施选址问题,而是一个复杂的系统工程,需要综合考虑多个因素。一方面,充电站的布局直接影响电动汽车用户的充电便利性,合理的布局能够降低用户的“里程焦虑”,促进电动汽车的推广应用。另一方面,充电站的建设和运营必然会影响电力系统的运行状态,过度的充电需求可能会导致电网负荷激增,甚至引发电力系统安全稳定问题。此外,电动汽车的充电行为与交通网络的运行状态密切相关,充电站的选址需要充分考虑交通流量的分布,以避免交通拥堵,提升充电效率。

传统的充电站规划方法往往侧重于电力系统的角度,例如以最小化网损、提升电压稳定裕度等为目标,而忽略了交通网络的约束。然而,随着电动汽车数量的增加,充电站的分布对交通网络的影响日益显著。如果充电站集中在交通繁忙的区域,容易加剧交通拥堵,降低充电效率,甚至影响城市交通的整体运行。因此,在充电站规划过程中,必须将交通网络流量纳入考虑范围,构建一个更加全面和合理的规划模型。

二、 考虑交通网络流量的充电站规划方法综述

针对考虑交通网络流量的充电站规划问题,国内外学者提出了多种理论和方法,主要可以归纳为以下几类:

  • 基于数学优化的方法: 这类方法通常以最小化建设成本、运行成本、网损、交通拥堵成本等为目标函数,以节点电压、线路潮流、充电站容量、交通流量等为约束条件,建立一个复杂的数学优化模型。常用的优化算法包括混合整数线性规划(Mixed-Integer Linear Programming, MILP)、遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)等。这种方法的优点是能够获得全局最优解或近似最优解,缺点是模型复杂,计算量大,求解时间长,难以适应大规模电力系统和交通网络。

  • 基于启发式算法的方法: 这类方法利用启发式规则,通过迭代搜索的方式来寻找最优或近似最优的充电站位置和容量。常用的启发式算法包括模拟退火算法(Simulated Annealing, SA)、禁忌搜索算法(Tabu Search, TS)等。这种方法的优点是计算速度快,能够处理大规模问题,缺点是容易陷入局部最优解,解的质量难以保证。

  • 基于多智能体系统的方法: 这类方法将电动汽车、充电站、电网等视为不同的智能体,通过智能体之间的交互和协作来优化充电站的布局。这种方法的优点是能够模拟复杂的系统行为,适应动态变化的环境,缺点是模型复杂,参数设置困难。

  • 基于地理信息系统(GIS)的方法: 这类方法利用GIS技术,将电力系统、交通网络、人口密度、土地利用等信息集成到一个平台上,通过空间分析和可视化技术来辅助充电站的选址。这种方法的优点是能够直观地展示各种因素的影响,方便决策者进行分析和判断,缺点是缺乏精确的数学模型,难以进行定量分析。

在具体应用中,不同的方法各有优劣,需要根据实际情况进行选择和改进。一般来说,对于规模较小的系统,可以采用数学优化方法;对于规模较大的系统,可以采用启发式算法或多智能体系统方法;对于需要考虑空间因素的系统,可以采用GIS方法。

三、 基于IEEE 33节点电力系统的充电站规划模型

本文以IEEE 33节点电力系统为例,建立一个考虑交通网络流量的充电站规划模型。该模型的目标函数包括以下几个部分:

  • 充电站建设成本:

     包括充电桩的购置成本、安装成本、土地成本等。

  • 充电站运行成本:

     包括电费、维护费、人工费等。

  • 电网网损成本:

     由于充电站的接入会增加电网的负荷,导致网损增加,需要将网损成本纳入考虑。

  • 交通拥堵成本:

     如果充电站集中在交通繁忙的区域,容易加剧交通拥堵,导致用户出行时间增加,需要将交通拥堵成本纳入考虑。

模型的约束条件包括以下几个部分:

  • 电力系统约束:

     包括节点电压约束、线路潮流约束、变压器容量约束等,以保证电力系统的安全稳定运行。

  • 充电站容量约束:

     包括充电桩的数量约束、充电功率约束等,以满足用户的充电需求。

  • 交通网络约束:

     包括路段容量约束、交通流量平衡约束等,以避免交通拥堵。

  • 电动汽车需求约束:

     模型需要能够满足一定比例的电动汽车充电需求,这个需求量可以基于未来的电动汽车普及率进行估计。

为了求解该模型,本文采用一种基于改进遗传算法的优化方法。该算法在传统遗传算法的基础上,引入了自适应交叉概率和变异概率,以提高算法的收敛速度和搜索能力。此外,为了更好地处理交通网络流量,本文采用一种基于最短路径算法的交通分配模型,将充电站的位置和充电需求转化为交通流量,并评估其对交通网络的影响。

四、 IEEE 33节点电力系统及仿真结果

IEEE 33节点电力系统是一个常用的电力系统测试算例,具有结构简单、参数明确等优点。该系统包含33个节点、32条线路,总负荷为3.72 MW + j2.3 MVar。本文对该系统进行了改进,加入了交通网络模型,并假设存在一定数量的电动汽车。

通过仿真实验,本文分析了不同充电站规划方案对电力系统和交通网络的影响。实验结果表明:

  • 合理的充电站规划能够有效降低电网网损,提高电压稳定裕度。

  • 考虑交通网络流量的充电站规划能够有效缓解交通拥堵,提升充电效率。

  • 采用改进遗传算法能够获得较好的优化结果,验证了本文模型的有效性。

具体来说,对比几种不同的充电站规划方案,我们发现:

  • 方案一:

     完全基于电力系统优化,忽略交通因素,充电站集中在电网负荷较高的节点附近,导致这些节点周围的交通拥堵严重。

  • 方案二:

     完全基于交通网络优化,忽略电力系统因素,充电站分散在交通流量较大的路段附近,导致电网网损增加,电压稳定裕度降低。

  • 方案三:

     采用本文提出的模型,综合考虑电力系统和交通网络因素,充电站的布局更加合理,能够平衡电力系统和交通网络的需求,达到最佳的整体效益。

五、 结论与展望

本文针对考虑交通网络流量的电动汽车充电站规划问题,以IEEE 33节点电力系统为研究对象,建立了一个综合考虑电力系统和交通网络约束的优化模型,并采用改进遗传算法进行求解。仿真结果表明,合理的充电站规划能够有效降低电网网损,提高电压稳定裕度,缓解交通拥堵,提升充电效率。

然而,本文的研究还存在一些局限性,未来可以从以下几个方面进行改进:

  • 模型简化与复杂系统:

     本文的电力系统和交通网络模型相对简化,未来可以考虑更加复杂的模型,例如考虑分布式发电、储能系统、动态交通流量等因素,以更真实地反映实际情况。

  • 实时优化:

     本文的研究主要集中在静态规划,未来可以考虑动态规划,根据实时电力系统和交通网络的状态,调整充电站的运营策略。

  • 数据驱动的方法:

     利用大数据技术,分析电动汽车用户的充电行为、交通出行模式等,为充电站规划提供更加精准的数据支持。

  • 考虑用户行为:

     模型的最终效果取决于用户的使用习惯,未来可以构建基于Agent的模型,模拟用户选择充电站的行为,从而更加准确地评估充电站规划方案的优劣。

⛳️ 运行结果

🔗 参考文献

[1] 段聪.计及风电出力优化或电动汽车充电站规划的配电网重构[D].华北电力大学,2015.DOI:10.7666/d.Y2879699.

[2] 李志勇.基于碳排放流和可再生能源的电动汽车充电站选址规划[D].深圳大学,2022.

[3] 李怡然.电动汽车规模化接入配电网的承载能力评估与优化调度策略[D].四川大学,2021.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值