【三电平NPC换流器用于UPFC】基于VSC的UPFC(统一功率流控制器)研究附Simulink仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

统一功率流控制器(UPFC)作为一种先进的柔性交流输电系统(FACTS)装置,能够灵活地控制输电线的功率潮流,提高电力系统的稳定性、经济性和输电能力,在现代电力系统中发挥着越来越重要的作用。基于电压源换流器(VSC)的UPFC因其控制灵活、动态响应快等优点,已成为UPFC技术发展的主流方向。而在VSC的选择上,三电平中性点钳位型(NPC)换流器因其独特的优势,在基于VSC的UPFC应用中具有显著的潜力。本文将深入探讨三电平NPC换流器在基于VSC的UPFC应用中的研究现状、优势、面临的挑战以及未来的发展趋势。

一、基于VSC的UPFC的基本原理与优势

传统的UPFC主要基于可控电抗器和串联电容器实现功率潮流控制,存在响应速度慢、控制范围有限等缺点。基于VSC的UPFC则采用两个并联的VSC,通过控制其输出电压的幅值和相位,独立地调节输电线的有功功率和无功功率潮流。具体而言,串联VSC注入一个与线路电压同频率的可控电压,改变线路的电压幅值和相位,从而控制线路的有功功率潮流;并联VSC则提供或吸收无功功率,控制线路的电压幅值,进而控制线路的无功功率潮流。

基于VSC的UPFC相比于传统的UPFC,具有以下显著优势:

  • 控制灵活性高:

     VSC可以通过控制其输出电压的幅值和相位,独立地调节线路的有功功率和无功功率潮流,实现更加精细的功率潮流控制。

  • 动态响应速度快:

     VSC的开关频率较高,能够实现快速的动态响应,更好地抑制电力系统的波动,提高系统的稳定性。

  • 谐波含量低:

     通过采用多电平技术和脉宽调制(PWM)策略,VSC的输出电压波形接近正弦波,谐波含量较低,对电力系统的影响较小。

  • 独立控制有功功率和无功功率:

     传统UPFC的有功和无功功率控制存在一定程度的耦合,而VSC-UPFC可以实现有功和无功功率的独立控制,提高控制精度。

二、三电平NPC换流器的优势与适用性

三电平NPC换流器是一种应用广泛的多电平换流器,其主要特点是每个桥臂都包含了多个功率开关器件,可以将直流电压分成三个电平输出,分别是+Vdc/2,0,-Vdc/2。相比于传统的二电平换流器,三电平NPC换流器在基于VSC的UPFC应用中具有以下优势:

  • 开关器件承受电压降低:

     在相同的直流电压下,三电平NPC换流器的开关器件承受的电压只有二电平换流器的一半,降低了器件的电压应力,可以选择耐压较低、导通电阻较小的开关器件,从而提高效率和降低成本。

  • 输出电压谐波含量降低:

     由于三电平NPC换流器可以产生更多的电压电平,其输出电压波形更加接近正弦波,谐波含量更低,减少了对电力系统的干扰。

  • dv/dt降低:

     三电平NPC换流器的电压变化率dv/dt较低,减少了对电机绝缘的冲击,延长了设备的使用寿命。

  • 易于模块化:

     三电平NPC换流器的模块化设计较为容易,方便系统的扩展和维护。

正是由于上述优势,三电平NPC换流器在基于VSC的UPFC应用中展现出良好的适用性。其在以下几个方面尤为突出:

  • 高压大容量应用:

     三电平NPC换流器更适合于高压大容量的电力系统应用,可以满足UPFC对功率等级的需求。

  • 对谐波要求高的场合:

     在对谐波要求较高的场合,例如敏感负载供电系统,三电平NPC换流器可以提供更优质的电能质量。

  • 长距离输电线路:

     在长距离输电线路中,三电平NPC换流器可以有效地控制功率潮流,提高输电效率,降低损耗。

三、三电平NPC换流器在UPFC应用中面临的挑战

虽然三电平NPC换流器在UPFC应用中具有诸多优势,但同时也面临着一些技术挑战:

  • 中点电位平衡问题:

     三电平NPC换流器的一个关键问题是中点电位的平衡。由于开关器件的非理想特性以及负载的不对称性,中点电位可能会发生偏移,导致电压分配不均,严重时甚至会损坏开关器件。因此,需要采用有效的控制策略来维持中点电位的平衡。

  • 控制复杂性增加:

     相比于二电平换流器,三电平NPC换流器的开关状态更多,控制算法更加复杂,需要更强大的计算能力和更精密的控制策略。

  • 器件数量增多:

     三电平NPC换流器需要更多的功率开关器件、二极管和电容,导致成本增加,可靠性降低。

  • PWM策略的优化:

     需要针对三电平NPC换流器的特点,设计优化的PWM策略,以降低开关损耗、提高效率。

  • 并联运行控制策略:

     在大容量UPFC应用中,可能需要采用多个换流器并联运行,如何实现多个换流器之间的功率分配和同步控制是一个重要的挑战。

四、研究现状与未来发展趋势

目前,国内外对三电平NPC换流器在UPFC应用中的研究主要集中在以下几个方面:

  • 中点电位平衡控制策略:

     针对中点电位平衡问题,研究人员提出了多种控制策略,例如基于空间矢量调制(SVM)的控制策略、基于冗余开关状态的控制策略、基于附加电路的控制策略等。

  • 新型PWM策略:

     为了降低开关损耗和提高效率,研究人员提出了多种新型PWM策略,例如选择性谐波消除(SHE) PWM、优化空间矢量调制(OVSVM)等。

  • 容错控制策略:

     为了提高系统的可靠性,研究人员提出了多种容错控制策略,能够在某些开关器件发生故障时,保证系统的正常运行。

  • 基于人工智能的控制策略:

     利用人工智能技术,例如模糊逻辑控制、神经网络控制等,可以实现更加智能化的功率潮流控制,提高系统的性能。

展望未来,三电平NPC换流器在基于VSC的UPFC应用中将呈现以下发展趋势:

  • 更高的功率等级:

     随着电力系统对UPFC的需求不断增加,三电平NPC换流器将会朝着更高的功率等级发展,以满足大型电力系统的需要。

  • 更高的效率:

     为了降低损耗、提高系统的经济性,三电平NPC换流器将会朝着更高的效率方向发展,例如采用新型半导体器件,优化开关策略等。

  • 更高的可靠性:

     为了保证电力系统的稳定运行,三电平NPC换流器将会朝着更高的可靠性方向发展,例如采用冗余设计,增强容错能力等。

  • 更智能化的控制:

     人工智能技术将会被更加广泛地应用于三电平NPC换流器的控制中,实现更加智能化的功率潮流控制,提高系统的性能。

  • 模块化和标准化:

     为了降低成本、方便维护,三电平NPC换流器将会朝着模块化和标准化的方向发展。

五、结论

三电平NPC换流器作为一种先进的多电平换流器,在基于VSC的UPFC应用中具有显著的优势,可以有效地控制电力系统的功率潮流,提高系统的稳定性、经济性和输电能力。尽管面临一些技术挑战,但随着研究的深入和技术的进步,三电平NPC换流器将在未来的UPFC应用中发挥更加重要的作用,为现代电力系统的发展做出更大的贡献。未来的研究方向应集中于中点电位平衡控制、新型PWM策略、容错控制策略以及基于人工智能的智能控制等方面,以充分发挥三电平NPC换流器在UPFC应用中的潜力。

⛳️ 运行结果

🔗 参考文献

[1] 周洋,江道灼,陈峰,等.基于模块化多电平换流器的限流式统一潮流控制器的设计[J].电力建设, 2015(5):7.DOI:10.3969/j.issn.1000-7229.2015.05.002.

[2] 李媛媛.统一潮流控制器选址定容及控制策略研究[D].东北大学,2015.DOI:CNKI:CDMD:2.1018.078866.

[3] 阎博,汪可友,Mariesa L.CROW,等.UPFC状态反馈精确线性化潮流控制策略[J].中国电机工程学报, 2012, 32(19):7.DOI:CNKI:SUN:ZGDC.0.2012-19-006.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
基于Python+OpenCV的全景图像拼接系统设计与实现 本系统的设计与实现基于Python和OpenCV,旨在提供一个高效、准确的全景图像拼接系统。系统的前台界面使用了最新的HTML5技术,使用DIV+CSS进行布局,使整个前台页面变得更美观,极大的提高了用户的体验。后端的代码技术选择的是PYTHON,PYTHON语言是当下最常用的编程语言之一,可以保证系统的稳定性和畅性,PYTHON可以灵活的与数据库进行连接。 系统的数据使用的MYSQL数据库,它可以提高查询的速度,增强系统数据存储的稳定性和安全性。同时,本系统的图像拼接技术以OpenCV为核心,最大化提升图片拼接的质量。 本系统的设计与实现可以分为以下几个部分: 一、系统架构设计 本系统的架构设计主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。 二、图像拼接算法 本系统使用OpenCV库实现图像拼接,OpenCV库提供了丰富的图像处理功能,可以实现图像拼接、图像识别、图像处理等功能。通过OpenCV库,可以实现高效、准确的图像拼接。 、系统实现 本系统的实现主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。同时,本系统还实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 四、系统优点 本系统的优点有: * 高效:本系统使用OpenCV库实现图像拼接,可以实现高效的图像拼接。 * 准确:本系统使用OpenCV库实现图像拼接,可以实现准确的图像拼接。 * 安全:本系统实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 * 灵活:本系统使用PYTHON语言,可以灵活的与数据库进行连接,实现灵活的图像拼接功能。 本系统的设计与实现可以提供一个高效、准确的全景图像拼接系统,为用户提供了一个方便、快捷的图像拼接体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值