Python|【Pytorch】基于小波时频图与SwinTransformer的轴承故障诊断研究

本文介绍了一种利用Pytorch实现的轴承故障诊断方法,通过小波变换获取时频图,再用SwinTransformer处理,以提高诊断准确性和效率。SwinTransformer结合小波时频图的创新策略有望为工业制造提供智能故障诊断解决方案。
摘要由CSDN通过智能技术生成

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

这是一个基于 Pytorch 实现的轴承故障诊断方法,它通过采集轴承振动信号,并将信号经过小波变换得到时频图,然后使用 SwinTransformer 对时频图进行处理以实现故障诊断。

SwinTransformer 是一个轻量级的 Transformer 模型,目前在计算机视觉领域得到了广泛的应用。它采用了防止显存泄漏的窗口交换机制,兼顾了局部信息和全局信息,具有较好的性能和较低的计算消耗。

在轴承故障诊断中,使用小波变换得到轴承振动信号的时频图,然后将时频图作为 SwinTransformer 的输入进行训练和预测。该方法可以实现对不同类型的轴承故障进行诊断,具有较高的准确率和稳定性。

Swintransformer是一种由Microsoft在2021年提出的方法,它是一种高效的图像分类模型,具有出色的性能和可扩展性。该模型使用了一种全新的Swin结构,它采用了分层的注意力机制和局部注意力机制,以实现高效的信息交互和全局视野。这种方法已经在图像分类、目标检测和语音识别等领域得到了广泛的应用。

本文将Swintransformer与小波时频图结合起来,共同用于轴承故障诊断中,是一种全新的创新方法。小波时频图是一种将时间和频率信息结合起来的图像表示方法,它可以有效地捕捉信号的时频特征,从而提高故障诊断的准确性和可靠性。通过将Swintransformer和小波时频图相结合,我们可以充分利用它们各自的优势,实现更加精确和高效的轴承故障诊断。

这种新的方法具有许多优点。首先,它可以有效地捕捉信号的时频特征,从而提高故障诊断的准确性和可靠性。其次,它可以快速地处理大量的数据,从而提高诊断的效率和速度。最后,它可以适应不同类型的轴承故障,并能够自动学习和优化模型,从而实现更加智能和自适应的故障诊断。

Swintransformer与小波时频图相结合,是一种非常新颖和创新的方法,可以为轴承故障诊断带来更加准确、可靠、高效和智能的解决方案。我们相信,这种方法将会在未来得到广泛的应用和推广,为工业制造和机械维修等领域带来更加可靠和高效的故障诊断技术。

需要注意的是,该方法需要大量的轴承振动信号数据集作为支撑,否则模型的效果可能会大打折扣。此外,训练和调参也是非常重要的,需要科学地选择合适的损失函数、学习率、训练批次等参数才能得到较好的结果。

📚2 运行结果

全部结果:

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]杜康宁,宁少慧.基于和的滚动轴承故障诊断研究[J].机床与液压, 2023, 51(15):209-215.

[2]黄驰城.结合时频分析和卷积神经网络的滚动轴承故障诊断优化方法研究[D].浙江大学[2023-11-10].

🌈4 Python代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值