【路径规划】基于改进遗传算法求解机器人栅格地图路径规划(matlab实现)

本文探讨了移动机器人路径规划中的多种算法,如RRT、PRM、Dijkstra、A*等,并展示了在Matlab中对这些算法的实现与应用实例。通过具体案例,展示了如何使用这些算法来解决复杂环境中的导航问题。
摘要由CSDN通过智能技术生成

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

移动机器人路径规划技术涉及的基本算法包括RRT(Rapidly Exploring Random Trees)、PRM(Probabilistic Roadmaps)、Dijkstra算法以及一些元启发式算法。这些算法在不同情境下被广泛应用,RRT和PRM主要用于处理复杂环境下的路径搜索,Dijkstra算法则通常用于在图形结构中寻找最短路径。此外,一些元启发式算法如A*、遗传算法和模拟退火算法等也被引入,以进一步优化路径规划的效果。这种多样化的算法组合使得移动机器人能够在各种复杂场景中高效且安全地规划路径。

📚2 运行结果

部分代码:

CaseToBeRun = 17;
if CaseToBeRun == 1
    run('./TestCase_1/RRT.m');
    saveas(gcf,'../results/RRT','png');
elseif CaseToBeRun ==  2
    run('./TestCase_2/RRTconnect.m');
    saveas(gcf,'../results/RRTconnect','png');
elseif CaseToBeRun ==  3
    run('./TestCase_3/RRTstar.m');
    saveas(gcf,'../results/RRTstar','png');
elseif CaseToBeRun ==  4
    run('./TestCase_4/PRM.m');
    saveas(gcf,'../results/PRM','png');
elseif CaseToBeRun ==  5
    run('./TestCase_5/dijkstra.m');
    saveas(gcf,'../results/dijkstra','png');
elseif CaseToBeRun ==  6
    run('./TestCase_6/Astar.m');
    saveas(gcf,'../results/Astar','png');
elseif CaseToBeRun ==  7
    run('./TestCase_7/APF.m');
    saveas(gcf,'../results/APF','png');
elseif CaseToBeRun ==  8
    run('./TestCase_8/DWA.m');
    saveas(gcf,'../results/DWA','png');
elseif CaseToBeRun ==  9
    run('./TestCase_9/GA.m');
    saveas(gcf,'../results/GA','png');
elseif CaseToBeRun ==  10
    run('./TestCase_10/ACO.m');
    saveas(gcf,'../results/ACO','png');
elseif CaseToBeRun ==  11
    run('./TestCase_11/PSO.m');
    saveas(gcf,'../results/PSO','png');
elseif CaseToBeRun ==  12
    run('./TestCase_12/BFO.m');
    saveas(gcf,'../results/BFO','png');
elseif CaseToBeRun ==  13
    run('./TestCase_13/ABC.m');
    saveas(gcf,'../results/ABC','png');
elseif CaseToBeRun ==  14
    run('./TestCase_14/CSA.m');
    saveas(gcf,'../results/CSA','png');
elseif CaseToBeRun ==  15

🎉3 参考文献

[1]马玉佳,李锦红.全媒体时代主流意识形态传播的现实境遇与路径优化[J].传播与版权,2024(02):72-75.DOI:10.16852/j.cnki.45-1390/g2.2024.02.022.

[2]D. H P N ,Daniel T . Optimizing Snow and Ice Route Removal Operations Using Vehicle Routing Problems and Geographic Information System[J]. Journal of Cold Regions Engineering,2024,38(2).

[3]张晓倩,黄磊,石雨婷等.基于蚁群与DWA融合的移动机器人动态路径规划[J].组合机床与自动化加工技术,2024(01):9-13.DOI:10.13462/j.cnki.mmtamt.2024.01.003.

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值